
2 CROSSTALK The Journal of Defense Software Engineering November 1998

From the Publisher

CROSSTALK is beneficial, and I endorse it every chance I get. I
really enjoyed “Rules a Program Manager Can Live By,” July
1998. I especially identified with Step 7, “Summarize Meet-
ings.” All too often, people get burned by not doing this. Ev-
eryone seems to come away with something different. I have

been emphasizing the importance of summarizing meetings,
and quoting your article.

Al Kaniss
U.S. Navy

Patuxent River, Md.

Summarizing Meetings Is Vital

Letter to the Editor

Reductions in procure-
ment funds mean that
most of the U.S.
military’s year 2010
systems are already in
our current inventory.
Because modification of

software-intensive systems provides the
most promise for increases in system
capability and flexibility, many 2010
requirements will be achieved through
sustainment of existing systems. With so
much being dependent upon the success-
ful upgrade of existing systems, perhaps it
is time to assess how process improvement
efforts might be better factored into “best
value” comparisons associated with the
award of sustainment contracts.

Process improvement requires an
investment of time and resources, which
in turn raises direct labor and overhead
costs. Development organizations make
this investment because their increased
efficiency and quality translate into
higher profitability and more follow-on
contracts. Because such organizations
usually produce systems in less time and
with fewer defects thus lowering develop-
ment costs, process improvement can be
factored into bids associated with new
system deliveries.

On the other hand, sustainment
contracts normally involve “level of ef-
fort” tasks and are negotiated based on
labor rates for defined periods and fund-
ing levels. Therefore, labor rates weigh
heavily in the determination of best
value, and unfortunately, process im-
provement efforts are often difficult to
quantify relative to labor rates. Indeed,
an organization that uses low-skill-level

Factoring Process Improvement into the Awarding
of Sustainment Contracts

Lt. Col. Joe Jarzombek
ESIP Director

employees and invests little in process
can offer low labor rates. However, stud-
ies demonstrate that those same organi-
zations take longer to deliver capabilities
that have more post-deployment defects.
Contracts awarded to low-labor-rate
organizations can easily result in higher
total costs and inferior results.

Most source selection teams under-
stand that process improvement contrib-
utes to “best value”; yet they also know
today’s “protest prolific” contracting
environment makes it difficult to award
sustainment contracts to higher-labor-
rate organizations—even those likely to
provide the best value—without
quantifiably objective criteria such as
industry standards. This has fundamen-
tally dire consequences for the military’s
2010 capability unless sustainment con-
tracting policies and practices accommo-
date provisions for process improvement.

Integrated capability maturity models
(as opposed to single discipline models)
provide the best process improvement
guidance for organizations that provide
post-deployment support. For fielded
systems, sustainment includes additional
acquisition, development, modification,
and maintenance activities, cutting across
disciplines that are often compartmental-
ized within different departments. There-
fore, enterprise-wide process improve-
ment is critical to sustainment organ-
izations. That is why the Capability
Maturity Model Integration (CMMI)
effort will better support the institution-
alization of enterprise-wide process im-
provement (see CMMI at http://
www.sei.cmu.edu). The Federal Aviation
Administration (FAA) has already dem-

onstrated the value of using an integrated
CMM (iCMM) with staging guidelines
(see FAA-iCMM® Web site and “Smart
Buying with the Federal Aviation
Administration’s Integrated Capability
Maturity Model” on page 15 of this issue).

Perhaps integrated process improve-
ment efforts might help support the
creation of a labor rate standard that
gives higher-maturity organizations due
credit for their higher efficiency. This
would require documentation of the
increased productivity of organizations
with higher maturity ratings. Many orga-
nizations use the industrial engineering
“standard hour” of work to estimate and
price a level of effort. We need a method
to quantify what a “standard software
engineer” can produce in one hour in a
“defined capability and maturity envi-
ronment.” If this could be determined,
the software industry might be able to tie
a “productivity compensation factor” to
the organization’s maturity to equalize
unfair bidding advantages between com-
peting organizations of different maturity
levels. For example, the standard could
authorize CMM Level 1 organizations to
budget efficiency at 95 percent, Level 2
at 100 percent, and through to Level 5 at
150 percent. Some could argue that these
numbers are not even close to the in-
crease in productivity; however, it shows
the need to invest in discovering what
the real numbers are.

More widespread recognition is
needed to substantiate that overhead
associated with process improvement,
while it increases labor rates, reduces the
cost of sustainment. Merely awarding
sustainment contracts based on lowest
labor rates could have irreparable conse-
quences for our 2010 capabilities. u

CROSSTALK The Journal of Defense Software Engineering 3November 1998

Software development models1 are gaining acceptance
in the software project estimating community, which is
always challenged to establish cost and schedule objec-

tives before projects begin. Predictive models can in fact be
further deployed into software projects to improve the quality
of development.

Developers implicitly understand the notion of software
quality; however, many ideas about quality unfortunately go
no farther than active prevention such as testing or walk-
throughs.

As critical as active quality control is, good planning will
multiply the effectiveness of any effort, saving both time and
money. But how can plans be laid without fully anticipating
the factors affecting quality? In the haze of battle surrounding
most development efforts, software development models pro-
vide the answer.

What Is Quality?
Discussions about software quality all too often focus on a
single measure: defects delivered. Indeed, this may be the most
significant measure of quality because software is useless—or
worse—if it suffers from too many bugs. However, as with any
other product, there are many dimensions to software quality.
• Correctness. Is the program correctly specified?
• Usability. Can users learn to use the software with reason-

able effort?
• Efficiency. Does the software minimize the use of hardware

resources?
• Reliability. Is the mean time between failures sufficiently

long?
• Adaptability. Can the software be easily adapted to new

uses?

• Robustness. Can the software be stressed without breaking?
Does it stand up to intentional or negligent user abuse?

• Maintainability. Once delivered, how challenging is it to
maintain the software?
Software development models can directly account for

many of these quality factors, either directly through estimates,
i.e., defects delivered, or via parameter settings that in turn
drive estimates.

An Overview of Parametric Models
Parametric models allow developers to specify software project
variables and to receive in return estimates of effort (cost),
schedule, and defects. Variables typically include complexity of
the software to be developed, specification and test level, qual-
ity of the development staff and tools, complexity of the devel-
opment language, and software size. Vendors of more mature
tools have had a longer opportunity to collect data and per-
form enhancements, so more variables are generally available
for their models.

Parametric models have several advantages over other
methods of prediction. First, vendors work continuously to
assure that their tools are accurate. The better tools also can be
substantially calibrated to the specifics of an organization while
retaining the essential sensitivities of key parameters. These
tools give rapid, elaborate feedback and therefore can be used
for realistic trade studies, even in a collaborative mode with
“heads up” conferencing features.

For the concurrent engineering necessary to simulta-
neously satisfy cost, schedule, requirements, and quality
goals, the benefit of parametrics is clear. No other method
permits such rapid, elaborate interaction between varied

In this article, we show how prediction models are used to improve delivered quality. We
further show that if you can anticipate and plan for the factors that affect quality, you
can leverage quality management activities to improve the entire development effort.

Driving Quality Through Parametrics
Daniel D. Galorath, Lee Fischman, and Karen McRitchie

Galorath Incorporated, The SEER Product Developers

Table 1. Cost / schedule/defect trade-off report.

Figure 1. Defects delivered vs. length of development.

Software Quality Assurance

gnitseTeroM gnitseTsseL ecnereffiD

shtnoMeludehcStnempoleveD 45.13 98.92 %6

shtnoMtroffEtnempoleveD 93.224,1 51.012,1 %81

tsoCraeYesaBtnempoleveD $ 00.260,909,02 $ 00.342,987,71 %81

noitciderPtcefeD 33 06 %54-

stniartsnoC EMITNIM EMITNIM

ffatSkaeP 95.36 01.75 %11

4 CROSSTALK The Journal of Defense Software Engineering November 1998

interests. Once development goals are set, parametric esti-
mates can be used by developers to ensure that quality goals
are achieved at least cost.

Defect Prediction
Of the many different aspects of quality, delivered defects are
among the most obvious and quantifiable. A number of defect
prediction methods are in use that rely on gross volume and
complexity metrics such as size,2 Halstead Software Science
Volume, McCabe Cyclomatic Complexity, or other composite
measures.3 An “integrated” defect model allows defect predic-
tions to be evaluated alongside of staffing and cost consider-
ations, which opens up a world of comparative scenarios.

The most useful prediction for a quality model is delivered
defects, meaning those that escape detection and are delivered
to the end user. A defect prediction allows you to plan for
acceptable magnitudes and take corrective actions—follow a
better process, lay on further testing, reduce scope, lengthen
schedule—when predictions are too high.

Table 1 illustrates a trade study driven by defect predic-
tions. For the testing effort required to halve delivered defects,
costs will rise somewhat, and schedule less so.

An alternative to predicting delivered defects is modeling
potential defects. Doing this allows developers to engage in
explicit defect-related “what-if” scenarios, such as illustrated in

Figure 1. The dashed line shows the defect level given an opti-
mal schedule that minimizes development effort. If the prod-
uct is delivered earlier, defects will rise above this level, but if
they are delivered later, defects will be lower. Note how the
defect penalty decreases as the development schedule stretches.
This is a powerful tool for managers to have to plan schedules
to specific defect targets.

Modeling Promotes Active Quality Control
It makes sense not only to predict defect levels but also to
predict adequate levels of quality control. Parametric models
offer developers the advantage of a database of completed
projects and industry wisdom. They show in concrete terms
exactly how many employees are required to deliver a product
of certain quality.

Models provide insight into quality control activities by
parsing effort and staffing estimates into individual labor cat-
egories and activities. These parsing factors can often be ad-

Figure 2. Activity allocation chart.

Figure 3. Development and maintenance effort as quality assurance
increases.

Figure 4. Staffing profile for a large project.

justed to the organization and the development process. This
not only makes staffing estimates more suitable to specific
development environments but also allows organizations to
better promulgate desired levels of quality control.

Is it necessary to rigorously follow the testing level indi-
cated? The answer is that they are benchmarks only, indica-
tions of what past development teams have required in order to
achieve defect efficiencies along the lines of those envisioned.
Maybe, quality targets can be achieved with different test staff-
ing from that indicated; maybe, they cannot.

Accounting for Other Quality Factors Through
Specification
The relationship in modeling is “many to few”—many param-
eters are available in a parametric model to specify factors from
the development environment to the final product. The pre-
dictions that result are usually limited to the trinity of cost,
staffing, and defects.

This mix of estimates and parameters allows developers to
account for many quality factors, as indicated by estimates or
as specified by parameters. With parameters, the analyst is not
predicting quality, as in the case of defects, but rather is specify-
ing quality, then judging the impact on cost, schedule, and
defects. Aspects of quality handled via parameters include
efficiency, adaptability, robustness, and maintainability.

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 5November 1998

As an example, maintainability is strongly correlated with
maintenance costs, which can be modeled by varying other
parameters. Figure 3 shows how reliability levels, for example,
impact not only upfront development costs but also eventual
maintenance costs. As specified reliability increases, defects
decline, but development costs increase. Maintenance costs
may also decline with increasing reliability, but soon the speci-
fication for a system becomes so rigorous that maintenance
costs also rise.

Some quality-related attributes are not specified with pa-
rameters but can be accounted for in other ways. For example,
usability may impact size, which is a prime input to a develop-
ment model. Cost and schedule estimates will vary in direct
proportion to software size, matching the intuitive result that
greater quality comes only at a higher price. Development
models tell you exactly how high that price will be.

Improving Quality by Modeling the Development
Process
The sheer utility of development models’ planning features
offers other avenues toward improving quality. With insight
into your project, as Figure 4 suggests, you are much closer to
engineering quality into your development process.

All too often, quality slips when staffing requirements are
poorly anticipated. Knowing the optimal staffing profile for a
project improves planning, lessens staffing-related volatility,
and therefore permits the timely application of testing activi-
ties. This particular chart also makes explicit the proper mix
between early requirements work vs. coding and testing; as is
well known, sufficient requirements definition does more to
determine quality than testing.

Development models simulate reality by incorporating
known development dynamics. For instance, it is less expensive
to do good work first than to apply more stringent testing
later. Figure 5 illustrates such a trade-off between the three P’s
of “people, process, product” vs. the alternative of increased
testing. The impact on defects delivered is shown; either curve
is drawn holding the other factor constant. Notice how there is
a disproportionate return on improvements in the develop-

Figure 5. Impact on defects: team quality vs. testing.

ment team, whereas there is only a linear return on improve-
ments in testing.

Conclusion
Although parametric models have long been used to establish
cost targets, they can be used for much more. Modern software
development models have years of analysis support invested in
them so that they can address such dynamic management
issues as quality. If your organization uses parametric modeling
for its estimates, see your estimators to see what they and their
tools can do for you. u

About the Authors
Daniel D. Galorath is president of Galorath Incorporated. He
has worked in all aspects of software development and software
management and is one of the principal developers of the SEER-
SEM software evaluation model. His published works include
software cost modeling, testing, error prediction and reduction,
and systems requirements definition.

Lee Fischman is special projects manager at
Galorath Incorporated. He is a frequent con-
sultant on estimating projects, and he also
conducts core research and development of
SEER software tools. He wrote the Software
Evaluation Guide for the Office of the Secre-
tary of Defence, Program Analysis and Evalua-

tion, and he has explored software economics and estimating in
numerous papers over the past several years, all available at http://
www.galorath.com.

Karen McRitchie is vice president of develop-
ment at Galorath Incorporated, responsible for
design and development of SEER tools. She
has nearly 10 years experience in software and
hardware cost-estimating and hardware reliabil-
ity modeling. She has been a lead member of
several Air Force cost-estimating teams for

major Department of Defense programs and has taught dozens of
estimation methodology courses for costing professionals.

Galorath Incorporated, The SEER Product Developers
Voice: 310-414-3222
E-mail: support@galorath.com

Notes
1. Mathematical estimation models are known to the cost estimat-

ing community as “parametric models.” As understood in math-
ematical English, this implies that functional forms are pre-
specified. However, to costing personnel, parametric means only
that these models have parameters to modify; no comment is
being made about functional form.

2. Lines of code, function points, and object-based metrics are the
most commonly used size measures.

3. For a description of how SEER-SEM handles defect prediction,
refer to the “SEER-SEM Defect Prediction” technical note avail-
able at http://www.galorath.com.

Driving Quality Through Parametrics

6 CROSSTALK The Journal of Defense Software Engineering November 1998

The Nature of Software and Its
Quality
Software is pervasive in modern society,
but we are often unaware of its presence
until problems arise. Software is one the
most important and yet one of the most
economically challenging technologies of
the current era. As a purely intellectual
product, it is among the most labor-
intensive, complex, and error-prone
technologies in human history. Even
though many successful software prod-
ucts and systems exist in the world today,
an overall lack of attention to quality has
also led to many problematic systems
that do not work right as well as to many
software projects that are late, over bud-
get, or canceled. In short, “Software
Quality Matters.” [1]

Although no standard industry defi-
nition exists for what constitutes good
quality in software, it is generally taken
to mean that a software product provides
value (satisfaction) to its users, makes a
profit, generates few serious complaints,
and contributes in some way to the goals
of humanity (or at least does no harm)
[2]. Software quality is difficult to define
because there is no single comprehensive
and complete standard definition of its
lexicon. Various aspects and terms are
found in sources such as ISO 9000-3,
Institute of Electrical and Electronics
Engineers Software Engineering Stan-
dards, and various books on the subject.
The following are the key dimensions of
software quality.
• Level of satisfaction. The degree to

which customers or users perceive
that a software product meets their
composite needs and expectations.

• Product value. The degree to which a
software product has value for its

various stakeholders relative to the
competitive environment.

• Key attributes (“ilities”). The degree
to which a software product possesses
a combination of desired properties,
e.g., reliability, portability, maintain-
ability.

• Defectiveness. The degree to which
a software product works incorrectly
in target user environments due to
debilitating operational defects.

• Process quality. In relation to the
development process by which the
product is produced, it means good
people doing the right things in an
effective way.
A definition fashioned from the

above aspects should be created for your
organization and for each project. Every
application or business domain faces a
specific set of software quality issues, and
software quality must be defined accord-
ingly. For example, mission-critical appli-
cations have extremely stringent opera-
tional needs, whereas typical information
system applications must focus on gen-
eral measures of customer satisfaction. It
also is important for each software devel-
opment project to define its specific

meaning of software quality during the
planning phase. Such a definition con-
tributes to the basis for setting objectives
and practical measures of quality
progress and determination of readiness
for release to customers. An example of
such a definition is shown in Figure 1 as
a Figure of Merit (FOM) Quality Factors
Model.

The categories and subcategories of
the FOM model can be weighted as
needed for use by domain or system. The
FOM would be the sum of the
weighted factors.

Now that software quality has been
defined and its supreme importance
established, it is necessary to examine the
cost perspective of the economics of soft-
ware quality, a subject in serious need of
an underlying theory.

Why Is CoSQ Important Now?
If it is an organizational goal to improve
business success through software quality,
it is important to address answers to the
following questions, which are too often
not asked in today’s software develop-
ment groups.

Using the Cost of Quality Approach for Software
Herb Krasner

Krasner Consulting

Cost of software quality (CoSQ) is an accounting technique that is useful to enable our understanding of
the economic trade-offs involved in delivering good-quality software. Commonly used in manufacturing, its
adaptation to software offers the promise of preventing poor quality but, unfortunately, has seen little use to
date. This article discusses the rationale and context for using CoSQ, then defines a basic CoSQ model that
differentiates the costs involved with handling nonconformances due to a lack of quality, appraisal efforts
performed for the achievement of acceptable quality, and efforts to prevent poor quality from occurring.

Figure 1. Software quality FOM model example.

CROSSTALK The Journal of Defense Software Engineering 7November 1998

• How much does poor software
quality cost?

• How much does good software
quality cost?

• How good is our software quality?
Once the answers to the above questions
are factually known, then
• Quality costs can be compared to

overall software production costs and
software profits.

• Quality costs can be compared to
benchmarks and norms.

• Deeper analysis can lead to actions
taken to improve the competitive
situation.

• The bottom-line effect of quality
programs and improvement actions
can be measured.

• Previously hidden costs related to
poor quality become visible.

• The economic trade-offs involved
with software quality become vis-
ible, thus leading to better decision
making.
Software companies concerned about

both product quality and economics can
successfully apply cost of quality prin-
ciples to their software developments, as
shown in the remainder of this article.
CoSQ is the framework used to discuss
how much good software quality and
poor software quality costs.

Adapting Cost of Quality
Principles to Software
The principles behind the modern cost
of quality (CoQ) concept were derived
for manufacturing applications and can
be found in the works of J.M. Juran [3].

In conventional quality literature,
P.B. Crosby [4] asserted that “it is always
cheaper to do the job right the first
time.” However, this statement must be
reconsidered with respect to software
development. Software is, to borrow a
metallurgical term, inherently malleable,
capable of being readily shaped, formed,
and reworked to alter or refine its func-
tion, its quality, or even its purpose.

Malleability is an important reason
to develop technical solutions in software
rather than in hardware. It allows busi-
ness and technology to adapt to rapid
changes in the world, revising objectives
and requirements to address new oppor-
tunities as they arise. Both customers
and producers have come to rely on
software’s ability to accommodate chang-
ing requirements, giving new meaning to
“do the job right.” A static sense of what
is right cannot be presumed during the
lifecycle of many software development
projects, thus giving rise to
nonmanufacturing-oriented lifecycle
models for software, e.g., spiral, incre-
mental, and evolutionary. This addi-

tional dynamism strongly influences the
economics of the software lifecycle and
therefore the application of quality cost
principles to software. Establishing and
maintaining a baseline definition of what
is acceptable quality becomes a key com-
ponent in the new model for CoSQ.

Applying CoQ Principles to
Software
The basis for the new model of CoSQ is
the accounting of three types of costs:
• Those incurred due to a lack of

quality.
• Those incurred in the appraisal and

achievement of acceptable quality.
• Those incurred to prevent poor qual-

ity from occurring.
Costs due to a lack of quality are

further divided into costs of internal
nonconformances and costs of external
nonconformances. Costs of achieving
quality are further divided into appraisal
costs and assurance costs. Prevention
costs are found both in the development
cycle and in organization-wide activities,
such as process improvement and metrics
collection and analysis, as well as in qual-
ity basis definition and management.

Table 1 provides definintions of the
three main CoSQ categories with the next
level of breakdown for typical subitems.
The term “nonconformance” means a

Table 1. Cost of software quality model categories.

Using the Cost of Quality Approach for Software

yrogetaCrojaM yrogetacbuS noitinifeD smetibuStsoClacipyT

htiwgnilaeD
.secnamrofnocnon

.secnamrofnocnonlanretnI otroirpdetcetedsmelborpytilauQ
.tnempihstcudorp

tnemeganamtcefedesaeler-erP , krower , sweiver-er , .gnitseterdna

.secnamrofnocnonlanretxE tcudorpretfadetcetedsmelborpytilauQ
.yreviled

troppuslacinhcetesaeler-tsoP , noitagitsevnitnialpmoc , tcefed
noitacifiton , sedargpulaidemer , .sexifdna

ehtgnisiarppA
.ytilauqfolevel

.tcudorpehtfonoitidnocehtgnirevocsiD folevelehtgnirevocsiD
.secnamrofnocnon

gnitseT , ecnarussaytilauqerawtfos , snoitcepsni , .sweiver

.ytilauqfotnemeveihcaehtgnirussA .gnitaglortnocytilauQ stiduaytilauqtcudorP , .deecorproesaelerotsnoisicedogonroog

roopgnitneverP
morfytilauq

.gnirrucco

.noitinifedsisabytilauQ ytilauqtes,ytilauqenifedotstroffE
sdradnats,slaog , .sdlohserhtdna

.sisylanaffo-edartytilauQ

ytilauqdetalerdnagnitsetecnatpeccarofairetircesaelergninifeD
.sdradnats

detneiro-ssecorpdnatcejorP
.snoitnevretni

ytilauqtcudorprooptneverpotstroffE
.ytilauqssecorpevorpmiro

gniniarT , stnemevorpmissecorp , noitcellocscirtem , .sisylanadna

8 CROSSTALK The Journal of Defense Software Engineering November 1998

deviation in one of the software work products with respect to
understood objectives, requirements, constraints, or standards. A
more detailed taxonomy of CoSQ categories is available in [5].

An Economic Model of Software Quality Costs
There is no validated economic theory of software quality in
existence today, which clearly makes it a ripe subject for
multidisciplinary research. The software community currently
uses a cost of quality theory borrowed from manufacturing,
which is exhibited in Figure 2.

Once quality is defined, the costs of achieving quality
(costs of conformance) and the costs due to lack of quality
(costs of nonconformance) have an inverse relationship to one
another—as the investment in achieving quality increases, the
costs due to lack of quality decrease, a relationship shown in
Figure 2. The quality metric for software is usually a defec-
tiveness level, such as number of defects per system (or part).
In traditional CoQ models, the total cost of quality (TCoQ)
has a point of diminishing returns, a minimum prior to
achieving 100 percent of the quality measure. Current re-
search is investigating whether the law of diminishing returns
applies to the CoSQ in all cases.

As an industry, we have collected little data about CoSQ
that could be used either to challenge or validate this theory.
The little we do have suggests that this economic model may
not account properly for the dynamics of software develop-
ment, since perfection is either not a goal or is a quickly mov-
ing target.

The NASA space shuttle software program collected and
reported on data in this area. In this case, failure-free software
is the goal for much of the software system that flies the
shuttle. As shown in Figure 3, Keller and Rhone [6] were able
to show the increasing cost of achieving extremely high reli-
ability in the mission-critical parts of the flight-control soft-
ware of the shuttle.

CoSQ: Data Found in the Open Literature
Although the costs of software quality assurance and process
improvement have been a topic of concern for over 20 years
[7], extremely limited data has been available in the open litera-
ture that discusses CoSQ. The main sources to date are a Price
Waterhouse study [8], my report [9], S.T. Knox’s article [10],

and the Raytheon efforts [11], which all discuss trends in soft-
ware rework costs.

The Price Waterhouse study analyzed the costs and benefits
of software quality standards from a survey of 19 United King-
dom software suppliers. The study estimated the cost of a qual-
ity control effort (prevention and appraisal costs) to be 23
percent to 34 percent of development effort. The study also
estimated failure costs at 15 percent of development effort for a
total cost of software quality (TCoSQ) of 38 percent to 49
percent of development effort. It must be noted that this study
excluded the costs of unit testing and rework because the sup-
pliers could not separate these costs. With increases in the esti-
mates to account for this oversight, TCoSQ in a software orga-
nization with a quality system can range from 40 percent to 55
percent of development costs with a conformance costs to
nonconformace costs ratio from 1.5-to-2.

Based on the results of my study of Lockheed projects at
various Capability Maturity Model (CMM) levels along with
anecdotal and quantitative data collected in the mid- and late
1980s, I predicted the relationship of Software Engineering
Institute (SEI) CMM-based process maturity level to typical
rework rates and quality levels that could be expected [9]. Table
2 is a slice of that presentation.

Due to the SEI CMM process maturity movement, we have
an aggregation of the payoff data that has been collected as a
result. See [12] for more information on how software process
maturity is related to CoSQ, software defectiveness levels, and
other measures of success.

R. Dion [13] used the CoQ model as one means to inter-
pret the results of improvement initiatives undertaken at
Raytheon Electronic Systems (RES). Recently, T.J. Haley, et al.
[11], updated this study. Using the results of tracking 15
projects, they recorded significant results in a little over three
years. In the Level 1 stage, RES’s CoSQ fluctuated between 55
percent and 67 percent of total development costs, and when
reaching Level 3 process maturity, their CoSQ had dropped to
approximately 40 percent of total project cost. The ratio of
conformance to nonconformance costs was 1.5. By 1996, this
organization’s TCoSQ was approximately 15 percent of devel-
opment costs, and the rework due to both internal and external
nonconformances has been reduced to less than 10 percent of
development costs.

Figure 3. The cost of ultra high reliability in the shuttle software.

Figure 2. Economic model of software quality costs.

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 9November 1998

Knox made similar predictions about CoSQ and rework
expectations across the levels of the SEI CMM (Figure 4) [10].
Starting with the (TCoSQ) at 60 percent of development costs
(based on two industry figures) for CMM Level 1 organiza-
tions, Knox used manufacturing experience to hypothesize that
CMM Level 5 organizations can cut this CoSQ by about 67
percent. He then rationalized the four component costs at each
CMM level. Knox’s model predicted that a CMM Level 3
organization would have a TCoSQ of 50 percent but with a
conformance to nonconformance cost ratio of .5. It appears
that Knox’s model may be a fair predictor of TCoSQ for ma-
turing software organizations but that actual conformance costs
are much higher and nonconformance costs much lower than
what the model predicts.

Typical manufacturing CoQ, ranging from 5 percent to 25
percent of company sales, contrasts significantly with CoSQ.
With the present state of software engineering practice, we can
expect CoSQ to range from 10 percent to 70 percent of devel-
opment costs. Even accounting for the margin between pro-
duction costs and sales, CoSQ appears to be roughly twice
manufacturing CoQ. Also, the optimum manufacturing CoQ
is often in the range of 95 percent to 100 percent of conform-
ance to quality standards. The open literature lacks data for
CoSQ as a function of conformance to quality, but the above
data suggests that software producers have yet to reach such an
optimum.

Elements of a CoSQ Program
There are many possible ways to apply the CoSQ approach. To
date, CoSQ techniques are only being used after the fact to
document the return on investment (ROI) for software im-
provement initiatives because executives want to know that
there is a payoff from the upfront investments. This type of
CoSQ application is expected to accelerate as more process
improvement programs take off.

Other ways in which the CoSQ approach can be used are to
• Provide a basis for budgeting the quality management and

assurance functions.

• Identify specific quality improvement candidates through
causal analysis.

• Compare proposed process improvements and identify the
most cost-effective ones.

• Provide a (one) measure to compare the success of various
projects.

• Reduce the quality costs on a particular project by altering
the process prior to or even on site.

• Determine the potential cost and risk impact of specific
quality trade-off decisions on specific projects.

• Determine a company’s potential legal exposure due to
customer-experienced defects.

• Provide cost data to demonstrate the relationship of em-
ployee efforts to the bottom line.

CoSQ Programmatics
Several points can be made with regard to the programmatic
aspects of measuring and using CoQ information specifically
for software development organizations. These are
• Initiating a CoSQ effort.
• Accounting and gathering the quality cost data.
• Gathering the quality metrics.
• Presenting the results.
• Improving the CoSQ program continuously.

Initiating the CoSQ Effort
Convincing management of the value of tracking CoSQ may
be the initial hurdle one encounters in using this technique.
There is a modest upfront investment required to educate those
to be involved.

Initially, rough estimates of software quality costs may suf-
fice well for several reasons.
• Usually, the largest CoSQ costs can be estimated readily

from time and activity reports, so the expense of data gath-
ering can be limited until its value is demonstrated.

• Controlled, scientific studies are unlikely, and incom-
plete data can suffice in beginning a software cost-benefit
analysis.

Figure 4. Cost of software quality and CMM level.

Table 2. Process maturity, rework, and quality results.

Using the Cost of Quality Approach for Software

ytirutaMssecorP
)citsiretcarahc(

kroweR
)troffetnempolevedlatotfotnecrep(

ytilauQtcudorP
)ytisnedtcefed(

erutammI 05.=> tigidelbuod

dellortnoCtcejorP 05.-52. tigidelgnis

lanoitazinagrOdenifeD
ssecorP

52.-51. X.

tcaFybtnemeganaM 51.-50. X0.

dnagninraeLsuounitnoC
tnemevorpmI

50.=< X00.<

10 CROSSTALK The Journal of Defense Software Engineering November 1998

• The published data indicates that the
quality cost difference between im-
proved and unimproved organiza-
tions is quite large.

• The primary purpose of the initial
CoSQ effort will be to show the
opportunity for cost savings.
The best advice is to use the “keep it

simple” principle in starting a CoSQ
initiative.

Accounting
Gathering quality cost data assumes that
costs have been accounted using task
categories that can be summed into the
four major categories of quality costs.
Many software organizations track costs
in a manner amenable to quality costing,
but many others do not. In the latter
case, a preliminary step of defining and
installing such a chart of accounts is
required. A sample of such a chart of
software quality costs can be found in
[5]. The quality categories in a software
organization’s chart of accounts must be
tailored to reflect its software process. To
realize the full benefit of CoSQ, it must
also allow for the addition of continuous
improvement tasks.

In the best cases, quality costs can be
taken directly from departmental ac-
counting (salary and expense) reports. In
other cases, it may be necessary to resort
to basic accounting and engineering
records, such as schedules, time reports,
defect reports, and purchasing records.
In the worst cases, one may fall back on
interviews with members of the software
organization to construct estimates of
each quality cost category. Exceptions are
in the external failure category.

One of the pitfalls of a CoSQ pro-
gram is “controversial cost categories.”
Usually, the question is about which
costs are normal operating costs and
which are quality costs. An example
would be the cost to produce a project
management plan. Although this plan is
produced for the sake of managing a
project’s expenses and schedule, it also
influences product and process quality.
In this case, it is helpful to keep in mind
the following points.
• The trend among quality specialists

has been to view quality costs as those
incurred to directly prevent, appraise,

and address the nonconformances of
poor quality.

• Arguments over controversial catego-
ries have been known to sabotage cost
of quality programs.

• The largest quality costs are those
that are most easily discerned, for
example, reviews, software quality
assurance, testing, and rework; there-
fore, it is often safe to exclude contro-
versial categories without unduly
affecting the TCoSQ.

• Consistency throughout a CoSQ
program is more important than
thorough inclusion of quality costs
because consistency allows for clear
identification of improvements and
candidates for improvement.
Concerns may also arise as to how

quality costs should be categorized.
Again, consistency is important. For
example, the costs associated with formal
inspections (peer reviews) can be treated
as prevention costs rather than as ap-
praisal costs. This is a matter of interpre-
tation, depending on when a work prod-
uct is considered ready for appraisal.
Although manufacturing inspections are
conducted on pieces after they are pro-
duced, in software production, inspec-
tions may be incorporated into the pro-
duction process. For documentation, this
means that a document is not complete
until it has undergone a peer review and
has been revised. The same is true for
code, especially when code inspections
precede unit testing—clearly an appraisal
activity.

Quality Metrics Collection
With regard to measures of quality, the
CoQ has been used primarily with a
fundamental approach to quality; that is,
defect rates (manufacturing) or service
problem reports (service industries)
rather than broader approaches that
would take into account factors such as
usability, testability, maintainability, and
so forth. The fundamental approach has
the advantages of straightforward mea-
surement and ease of understanding. It
also allows comparison of dissimilar
products. Furthermore, if failure costs are
collected in a defect tracking system, the
most expensive defects can be identified
for root cause analysis [14]. This discus-

sion recognizes that most software pro-
ducers take a fundamental approach to
quality, concentrating on defect measure-
ment, prevention, and removal.

Defect density is a good metric to
start with measuring CoSQ improve-
ments; specifically, CoSQ can be plotted
against defect density at the completion
of system testing. This metric may be
obtained from defect reports during
alpha and beta tests and for a period,
e.g., six months, following product re-
lease. Better yet, it may be generated
statistically based on post-release defect
reports for previous products from the
same organization. Robert Stoddard and
John Hedstrom [15] offer a recent ex-
ample of this approach using Bayesian
statistics in a defect-prediction model.
External failure costs can be estimated
from the defects-at-release metric.

Presenting CoSQ Information
The relationships that have the greatest
impact on management are
• Quality costs as a percent of sales

and profit.
• Quality costs as a percent of total

development costs.
• Quality costs compared to the mag-

nitude of the current problem.
Showing CoSQ as a percent of total

development costs is appropriate to
software for several reasons. First, sales
and profit may not have a direct relation-
ship to the cost of a software product
since software pricing is often dictated by
market forces. Second, all but a small
percentage of software development costs
can be measured in labor hours, so the
costs can be readily shown in either
hours or dollars. Third, the state of the
art in software development is such that
comparing quality costs to development
costs illustrates the magnitude of the
current problem.

Though quality costs as a percent of
development costs can show significant
effects of improvements, this ratio does
not reveal the optimum cost of quality.
The optimum can be seen when quality
costs are shown as absolute costs against
a quality measure. Plotting CoSQ costs
against a quality measure, such as defect
density, reveals trends in an organization’s
quality processes, e.g., in [16].

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 11November 1998

Improving the CoSQ Program
Based on initial usage of CoSQ, organi-
zations should expect to encounter diffi-
culties in the following areas.
• When and how the CoSQ data is

gathered, analyzed, reported, and
used.

• How the approach clashes with
other approaches that are already in
use, e.g., existing work breakdown
structures that do not map easily to
CoSQ categories.

• How the CoSQ model is defined at
the detailed levels.

• How the approach is implemented
consistently in the organization.

• How CoSQ is used for root cause
analysis.

• How CoSQ is used to stimulate
improvements.
These difficulties can be overcome

with appropriate training and coaching.
Feedback on the usefulness of the

CoSQ data presented can guide how the
organizational CoSQ program should be
evolved over time. The lessons learned
from trials and early adopters will be
invaluable. The technology to support
CoSQ will emerge quickly in response to
the needs as they grow, once a consensus
on the CoSQ model is reached. Many of
the Total Quality Management and CoQ
tools available for manufacturing can be
adapted for use in software. CoSQ tools
appear to be a significant market oppor-
tunity yet to be explored.

Conclusion
CoQ is a proven technique in manufac-
turing industries for both communicat-
ing the value of quality initiatives and
indicating quality initiative candidates.
CoSQ offers the same promise for the
software industry but has seen little use
to date. Initial uses of CoSQ show that it
can be a large percentage of development
costs—60 percent or higher for organiza-
tions unaware of improvement opportu-
nities. CoSQ has demonstrated its value
in measuring the ROI of a software im-
provement program, as in the RES case.

CoSQ is a technique that is most
useful in enabling our understanding of
the economic trade-offs involved in
delivering good-quality software. Apply-
ing CoSQ in your organization requires a
small investment that pays off hand-
somely in your increased understanding
of the complexities and hidden issues
involved in the delivery of quality soft-
ware. The proliferation of CoSQ will
help eliminate the debilitating effects of
poor software quality. ◆

About the Author
Herb Krasner, presi-
dent of Krasner Con-
sulting since 1991, has
almost 30 years experi-
ence in the software
engineering profession
as a practitioner, re-

searcher, and teacher. He is a master lead
assessor, having performed over 40
CMM-based appraisals in the last 10
years since being certificated by the SEI.
He has also been involved as a subject-
matter expert in a number of computer-
oriented legal actions. He is the founder
of the Austin Software Process Improve-
ment Network, chairman emeritus of the
Software Quality Institute at the Univer-
sity of Texas and has been chairman of or
keynote speaker at several international
conferences. He also teaches the body of
knowledge for the ASQ Certified Soft-
ware Quality Engineer Program. He has
frequently published and presented his
work in many professional forums.

Krasner Consulting
1901 Ringtail Ridge
Austin, TX 78746
Voice: 512-328-4264
Fax: 512-328-3260
E-mail: hkrasner@cs.utexas.edu

References
1. Software Quality Matters, http://

www.utexas.edu/coe/sqi.
2. Davis, A., Editor’s Column, IEEE Soft-

ware, December 1997.
3. Juran, J.M. and Frank M. Gryna, Juan’s

Quality Control Handbook, 4th ed.,
McGraw-Hill, New York, 1988.

4. Crosby, P.B., Quality Without Tears,
McGraw-Hill, New York, 1988.

5. Campanella, J., ed., Principles of Quality
Costs, 3rd ed., American Society for
Quality Control, Milwaukee, Wis.,
forthcoming, 1999.

6. Krasner, H., “A Case History of the
NASA Space Shuttle Onboard Systems
Project,” SEMATECH Technology
Transfer Report 94092551A-TR, Oct.
31, 1994.

7. Alberts, D.S., “The Economics of Soft-
ware Quality Assurance,” National Com-
puter Conference 1976, pp. 433-441.

8. Price Waterhouse, Software Quality
Standards: The Costs and Benefits: A
Review for the Department of Trade and
Industry, Price Waterhouse Management
Consultants, London, 1988.

9. Krasner, H., “Self-Assessment Experi-
ences at Lockheed,” Proceedings of the
SEI/AIAA Software Process Improvement
Workshop, Chantilly, Va., Nov. 8, 1990.

10. Knox, S.T., “Modeling the Cost of
Software Quality,” Digital Technical
Journal, Vol. 5, No. 4, 1993, pp. 9-16.

11. Haley, T.J., “Software Process Improve-
ment at Raytheon,” IEEE Software,
November 1996, pp. 33-41.

12. Krasner, H., “Accumulating the Body of
Evidence for the Payoff of Software
Process Improvement,” (1997 version),
http://www.utexas.edu/coe/sqi/archive,
also in “The Payoff for Software Process
Improvement: What It Is and How to
Get It,” The Elements of Software Process
Assessment and Improvement, IEEE Com-
puter Society Press, 1998.

13. Dion, R., “Process Improvement and
the Corporate Balance Sheet,” IEEE
Software, July 1993, pp. 28-35.

14. Mandeville, W.A., “Software Costs of
Quality,” IEEE Journal on Selected Areas
in Communications, Vol. 8, No. 2,
1990, pp. 315-318.

15. Stoddard, Robert and John Hedstrom,
“A Bayesian Approach to Deriving
Parameter Values for a Software Defect
Predictive Model,” Proceedings of the
Sixth Annual Conference on Applications
of Software Measurement, Oct. 2 – Nov.
2, 1995, pp. 323-346.

16. Houston, D., “Cost of Software Qual-
ity: Selling Software Process Improve-
ment to Managers,” Software Quality
Journal, forthcoming, 1998.

Using the Cost of Quality Approach for Software

12 CROSSTALK The Journal of Defense Software Engineering November 1998

Developing quality software is
often considered elusive—it
is more difficult to confidently

know that you have developed good
software than it is to build good soft-
ware. In the physical sciences, the re-
verse is true—it is easier to measure the
degree of perfection than it is to achieve
perfection.

One reason why it is difficult to
measure software quality stems from the
many practical and theoretical deficien-
cies of software testing. For example,
consider that to be 99 percent confident
that a program has a probability of fail-
ure of less than one in 1 million, the
software must be tested over 5 million
times without observing a failure. Test-
ing 5 million times requires that you
have an oracle that is correct (an oracle is
a person who knows or a program that
knows what the correct software output
is for all of the 5 million test cases).
Rarely does a perfect oracle exist, and to
create 5 million test cases would be in-
tractable. And if you have the oracle and
the test cases, there remains the impos-
sible task of having to test using them.

Challenges such as these have made
many in the software community decide
that quality assessment of a software

product is impractical. In addition to the
traditional approach of assessing the
“goodness” of the software, this has led
to alternate approaches to software qual-
ity assessment. The two key competing
approaches are process maturity assess-
ment and accreditation of software pro-
fessionals. The remainder of this article
describes the pros and cons of these
three approaches to predicting the qual-
ity of software.

Accrediting Personnel
There are various ways to accredit, i.e.,
certify, personnel. The rigor with which
personnel are certified depends on the
criticality of the services that the person
offers.

Professional licensing examinations,
practical experience, and earned degrees
are a few ways in which professionals can
be accredited. For example, graduating
from law school says something about a
person’s ability to practice law. It says
less, however, than had the person also
passed the bar. If this were not true,
there would be no need for state bar
examinations.

The intuition behind certifying
“people skills” is simple; it should not be
left up to the untrained consumer to be
responsible to determine whether a can-
didate is qualified to perform the desired
services. For example, how can Joe Pub-
lic be expected to determine whether a
dentist is qualified? Only if Joe Public
were a dentist would he have any hope
of making such a determination. By
requiring dental school graduates to pass
an examination prepared by dentists, the
state takes the responsibility away from
Joe Public. Further, if certified profes-
sionals do not live up to the expectations
of their peers, they could be found liable
and could lose their certification.

Like the older and more traditional
professions of accounting, medicine, and
law, the software industry is beginning
to standardize the core principles each
software professional should know.
Microsoft claims that there are greater
than 160,000 people who have become
Microsoft certified as either product
specialists, solution developers, trainers,
or systems engineers [1]. This type of
certification is “voluntary” (not required
by any official governing organization)
and expensive; however, the costs of
certification can be recouped in the first
year of working from the extra income
the certificate enables. For example, it
costs from $8,000 to $12,000 to become
a Microsoft certified systems engineer
(MCSE), and the total time to certify is
approximately six months [1]. A person
then can expect to make the same
amount in additional income compared
to a person who is not MCSE certified.

Just like doctors, lawyers, and certi-
fied public accountants, rumblings are
also being heard concerning mandatory
software engineering personnel certifica-
tion. A vote by the Texas Board of Pro-
fessional Engineers on Feb. 18, 1998
stated the board’s intention to recognize
software engineering as a legitimate
engineering discipline and stated plans
to license professional engineers in soft-
ware engineering (a complete position
statement from the Texas board can be
found at http://www.main.org/peboard/
softweng.htm). On June 17, 1998, the
Texas board gave unanimous approval to
all proposals in the statement. Beginning
July 1999, the Texas board will license
software engineers who can satisfy the
following [2]:
 • Possession of an engineering degree,

a computer science degree, or some
other high-level mathematics or

 The Software Quality Certification Triangle
Jeffrey Voas

Reliable Software Technologies

There are three distinct approaches to certifying the quality of software: accrediting
personnel, certifying the development organization, and assessing the “goodness” of the
software. These approaches, and hybrids thereof, are described, and criteria are given to
determine which approach is best, depending on the software that needs to be certified.

Figure 1. The software quality certification
triangle.

CROSSTALK The Journal of Defense Software Engineering 13November 1998

science degree that the board will
evaluate for adequacy.

• At least 16 years of creditable experi-
ence performing engineering work
(12 years for those who hold a degree
approved by the Engineering Ac-
creditation Commission of the Ac-
creditation Board for Engineering
Technology, Inc.).

• References from at least nine people,
five of whom must be licensed engi-
neers.

• Submission of documented creden-
tials as required.

After the Texas board releases the profes-
sional software engineering examination
in 1999, individuals with less experience
will be allowed to obtain a Texas Profes-
sional Engineering license by passing the
examination.

Assessing the Software Product
Generally, there are two approaches to
product-based assessment of quality:
white-box and black-box. White-box
assessment techniques include activities
such as collecting static code metrics or
measuring the degree of coverage
achieved during unit testing. Black-box
techniques include reliability testing.

White-box and black-box techniques
are not panaceas, however. For example,
because reliability is based on logical
correctness and the operational environ-
ment and not structural properties, it is
unclear what relationship a code com-
plexity metric has with the reliability of
the software. Further, it is impossible to
exhaustively test a simple program that
reads in two 32-bit integers [4].

With today’s push toward commer-
cial-off-the-shelf (COTS) software,
white-box certification techniques are
normally not used by COTS consumers.
However, white-box techniques may be
applied by vendors if they wish to do so.
Therefore, COTS consumers who are
genuinely concerned about what lurks in
the software they purchase must
decompile back to source code to apply
white-box analyses such as coverage
testing or inspections.

Most COTS licenses deem this act a
violation of the licensing agreement.
Further, pending global legislation may
weaken the ability of consumers to have

such analysis done by independent cor-
porations or consultants. In addition, a
global treaty has been presented for U.S.
approval entitled the World Intellectual
Property Organization (WIPO) Treaty.
The treaty includes language that makes
it illegal to reverse engineer software to
expose security vulnerabilities. The treaty
will make it illegal for corporations and
consulting services to conduct real-world
testing of security software. Supposedly,
research organizations will still be al-
lowed to do so, however.

President Clinton has announced his
intentions to sign the treaty, and it is
expected to pass in the U.S. House of
Representatives. The U.S. Senate has
already passed the measure that deals
with the treaty by a score of 99 to zero.
The legislation is part of a global at-
tempt to produce treaties that reduce the
amount of copyright infringement on
information technology. But the down-
side is that it disallows consumers the
right to independently certify the secu-
rity of the software they purchase (with-
out the vendor’s permission).

Certifying Processes
Because of the limitations associated
with different forms of product assess-
ment (testing as well as techniques such
as formal verification), in the mid-
1980s, the notion of “directly assessing
software quality” was dismissed as im-
plausible. This opened the door to ideas
such as “process maturity assessment”
and other indirect approaches. The most
well-known process assessment model is
the Software Engineering Institute Capa-
bility Maturity ModelSM for software.
This model and other manufacturing-
like standards rely on one premise—
good processes deliver good software.
This premise has also lead to govern-
ment regulatory standards for software
certification in avionics, medical devices,
and electric power generation. The
premise here is plausible. All developers
have to do is score themselves using a
pre-defined ranking scheme (for what is
and is not good software development
procedures), then apply that score to
their software. For example, if develop-
ment organization A is ranked higher
than organization B, it is assumed that

software from A has more quality than
software from B. The problem is that
good processes do not guarantee good
software [6]. If performed properly, good
processes merely increase the likelihood
of producing quality products; if pro-
cesses are not performed properly, the
likelihood is reduced. However, given a
fixed set of development processes, it is
still possible that organization A, that
improperly applies the set, produces
better software than organization B, that
properly applies the set. Furthermore,
this does not account for issues related to
which processes are “best.” These facts,
taken together, diminish the notion that
process assessment will become a satis-
factory substitute for product assess-
ment. Ask yourself this: Would you buy
a car without test driving it? Few would,
but this is precisely what is done when
process assessments are employed instead
of product assessment. Process assess-
ments are analogous to a car manufac-
turer that tells you what phases were
undertaken during manufacture, which
is no substitute for taking a test drive.

Software “Insurability”
I wil examine what role quality certifica-
tion can play with respect to software
insurability. Software insurability refers
to the software-induced risk that an
insurer is willing to take in exchange for
an insurance premium. The insurer is
not insuring the software but is instead
insuring the object that the software
controls. But before offering insurance
for that object, the insurer must under-
stand the worst-case scenarios that can
result if the software is defective.

Consider that Swedish insurer Trugg-
Hansa made the following exclusion
effective May 1, 1998 in the general
conditions of its business insurance
policies.

“The policy will not cover damage,
cost, legal, or other liability caused
directly or indirectly or connected
to time-related disturbance in
computer functionality.”

This demonstrates the extreme, defen-
sive posturing being seen as a result of
the year 2000 problem. But of equal
significance, it opens the door for

The Software Quality Certification Triangle

14 CROSSTALK The Journal of Defense Software Engineering November 1998

nontime-related exclusions for other
anomalous software behaviors. For ex-
ample, exclusions might someday read as
follows:

“The policy will not cover damage,
cost, legal, or other liability caused
directly or indirectly or connected
to disturbances in computer func-
tionality.”

Such a waiver enables an insurer to
avoid responsibility for all computer-
related problems. The onus is placed on
consumers to know the quality of the
computer systems they employ. Con-
sumers now bear their own liability
without access to an insurer to step in as
their surrogate in case of a mishap. This
represents a first in the software indus-
try—insurers are so concerned about
software failures that they have begun to
include exclusions in their policies.
When a situation such as this is coupled
with the WIPO Treaty and the disregard
for consumer protection that exists in
the current version of the Uniform
Commercial Code, Article 2B [3, 5], it is
clear that the need for independent
third-party certification concerning the
processes, product, and personnel could
not be greater.

Interestingly enough, a business has
been formed to address the insurability
problem—the Software Testing Assur-
ance Corporation of Stamford, Conn.
This company was founded in 1997 to
provide independent certification. Their
first certification offering will assess the
testing processes used on year-2000-
converted software. They currently cer-
tify most process assessments and a small
portion of product assessments (their
standard can be viewed at http://
www.STACorp.com/draft/
standard.htm). This independent certifi-
cation is available only to corporations
that seek business disruption insurance
in the event their computer systems fail
as a result of year 2000 software prob-

lems. The founding of this organization
opens the door for additional software
quality certification standards for infor-
mation systems when business risks are
directly tied to software quality and
insurance protection is sought.

Summary
The hypothesis that certified personnel
equates to higher quality software is easy
to disprove. The hypothesis that a more
mature process equates to higher quality
software can also be easily debunked.
Product assessment that studies the
dynamic behavior of software is clearly
the best approach to certifying software
quality, but problems that relate to feasi-
bility often reduce the ability to perform
assessments with any degree or thor-
oughness.

The best approach is to create a vari-
ety of different certification schemes
based on the different types of examina-
tions or processes used from each of the
three categories and the criticality of the
software (flight control software vs.
games). That is, aspects of each of these
three broad approaches can be combined
into a single standard. For example,
knowing that an organization has a
certain process maturity, the personnel
who developed and tested the software
were licensed, and the software received
certain forms of quality assessment
should result in greater confidence in the
software’s quality than if only one of
these facts were known. The challenge,
naturally, is how to quantify subjective
characteristics such as personnel accredi-
tation. Nonetheless, it is plausible to
develop different software quality certifi-
cation schemes that appropriately weigh
different techniques within the three
approaches with respect to the criticality
of the software.

Acknowledgments
I thank Don Bagert for his efforts to
keep me up to date on Texas’ certifica-
tion plans. u

About the Author
Jeffrey Voas is a co-
founder of and chief
scientist for Reliable
Software Technologies
and is currently the
principal investigator on
research initiatives for

the Defense Advanced Research Projects
Agency and the National Institute of
Standards and Technology. He has pub-
lished over 85 refereed journal and confer-
ence papers. He co-wrote Software Assess-
ment: Reliability, Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers, and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Voice: 703-404-9293
Fax: 703-404-9295
E-mail: jmvoas@rstcorp.com

References
1. Ayala, J., “Training the Microsoft Way,”

Windows NT Magazine, March 1998,
pp. 122-129.

2. http://www.main.org/peboard/
softweng.htm.

3. Kaner, C., “Article 2B is Fundamentally
Unfair to Mass-Market Software Cus-
tomers,” submitted to the American Law
Institute for its Article 2B review, Octo-
ber 1997.

4. Huang, J. C., “An Approach to Testing,”
ACM Computing Surveys, September
1975, pp. 113-128.

5. The American Law Institute and Na-
tional Conference of Commissioners on
Uniform Laws, Uniform Commercial
Code, Article 2B (Draft), November
1997.

6. Voas, Jeffrey, “Can Clean Pipes Produce
Dirty Water?” IEEE Software, July 1997,
pp. 93-95.

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 15November 1998

Software Engineering Technology

The FAA developed the FAA-
iCMM to guide improvement
of the engineering, manage-

ment, and acquisition processes it uses to
acquire software-intensive systems.
Three CMMs were being used separately
in different FAA directorates that work
on different aspects of acquisition: the
SW-CMM [2], the SE-CMM [3], and
the SA-CMM [4]. These CMMs have
different architectures, goals, terminol-
ogy, and appraisal methods, and none
alone covers all FAA system acquisition
activities. Although some improvements
were being made using one model, the
goal of FAA-wide, full lifecycle process
improvement remained elusive. In addi-
tion, the FAA had moved to using inte-
grated product teams as the implementa-
tion arm for its new Acquisition
Management System [5], and these
teams needed processes that interre-
lated their disciplines.

The FAA-iCMM initiative began
in fall 1996 with an analysis and pre-
liminary merger of these three CMMs
at the process area level. One sample
process area was also elaborated at the
base practice level [6, 7]. These efforts
demonstrated that it was possible to
integrate CMMs of different architec-
tures and that the resultant model
contained a significant reduction in
the number of process areas and prac-
tices while still covering the individual
CMM disciplines.

In March 1997, the FAA formed a
team of FAA and external CMM and
domain experts and began work on the
integrated model. The project purpose
was to derive a reference model that
would
• Describe key elements of an effective

system acquisition process.
• Describe an evolutionary improve-

ment path.
• Have an associated appraisal

method.
• Faithfully and robustly capture all

features of its three source CMMs
(SA-CMM, SE-CMM, and SW-
CMM).
Meanwhile, the Software Engineer-

ing Institute (SEI) began to develop a
Common CMM Framework (CCF) [8]
to provide guidance to multiple CMM
users and to assist CMM developers and
integrators. The FAA-iCMM project
followed those draft guidelines as they
continued to evolve in parallel with FAA
efforts.

A complete draft of the FAA-iCMM
was completed by June 1997 and sub-
mitted to the SEI for review. FAA man-
agement adopted an FAA-iCMM-related
performance goal that same month. In
late September, a joint SEI-FAA review
and working session was held to ensure
consensus that the FAA’s work captured
its source CMMs and followed CMM
principles, construction guidelines, and
requirements as identified in the latest
draft CCF documents. Version 1.0 of
the FAA-iCMM was released in Novem-
ber 1997 with endorsement by the SEI

as a new product type—an integrated
Capability Maturity Model (iCMM).

General CMM Integration
Decisions

What to Integrate (Scope)
The FAA chose to integrate the three
CMMs that were already in FAA use and
which together covered the engineering,
acquisition, and management processes
used by the FAA to acquire software-
intensive systems. The Integrated Prod-
uct Development CMM was briefly
considered, but the draft model did not
seem stable enough to be included at
that time. The various drafts of SW-
CMM, Version 2.0 were also coming
out, but the FAA decided to use vali-
dated versions of the source CMMs to
the extent possible for the initial version
of the model.

How to Represent the Model
(CMM Architecture)
The FAA chose to use a hybrid architec-
ture that includes both the continuous
and staged features of its source CMMs
(see Table 1). Through this “continuous
with staging” architecture, the FAA-
iCMM provides guidance to improve
process capability and organizational
maturity. As in a continuous representa-
tion, the FAA-iCMM describes the
domain aspect, e.g., process areas and
base practices, separately from the capa-
bility aspect (capability levels and ge-
neric practices). This feature of the con-
tinuous representation provides guidance

Smart Buying with the Federal Aviation
Administration’s Integrated Capability Maturity Model

Linda Ibrahim
Federal Aviation Administration

The Federal Aviation Administration (FAA) has developed an integrated Capability Maturity
Model SM for the acquisition of software-intensive systems. This model, known as the FAA-iCMM ®

[1], integrates the Systems Engineering Capability Maturity Model (SE-CMM, Version 1.1), the
Software Acquisition CMM (SA-CMM, Version 1.01), and the CMM for Software (SW-CMM,
Version 1.1). The FAA is achieving more effective and efficient processes and process improvement by
using the integrated model rather than the three source CMMs separately. This article describes the
FAA’s process improvement environment, why the FAA-iCMM was constructed, the model’s archi-
tecture, domain, capability levels, maturity levels, and the FAA-iCMM Appraisal Method.

Capability Maturity Model is a service mark of
Carnegie Mellon University. CMM is registered
in the U.S. Patent and Trademark Office.

16 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

Overview of the Model
The FAA-iCMM is structured to answer three process im-
provement questions: What activities should be performed (the
domain aspect), how can performance be improved (the capa-
bility aspect), and what processes should be focused on next
(maturity levels)? The FAA-iCMM Appraisal Method (FAM)
supports application of the model. Each aspect is briefly de-
scribed below.

The Domain Aspect
The domain is the acquisition of software-intensive sys-
tems. There are 23 process areas derived from integrating
the 52 process areas or key process areas of the three
source CMMs. These process areas are grouped into four
categories:
• Lifecycle or engineering.
• Management or project.
• Supporting.
• Organizational process areas.

Table 2 shows the 23 process areas of the FAA-iCMM and the
major sources used to derive each process area.

Each process area description includes a purpose, goals, and
from two to 10 fully elaborated base practices. Some excerpts
from the Requirements Process Area (PA 02) are provided in
Table 3.

The Capability Aspect
There are five capability levels in the FAA-iCMM, and generic
practices at each level provide guidance to improve any pro-
cess. Generic practices are additive as process capability in-
creases through the five levels. The capability levels, their goals,
and their generic practices are summarized in Table 4.

Maturity Levels
Maturity levels in the FAA-iCMM are groupings of process
areas and generic practices. They “stage” the process areas to
provide guidance to improve organizational maturity. Maturity
levels are conceptually the same as capability levels, i.e., the
same five levels are employed, but they provide guidance on
what processes together contribute to each step of organiza-
tional maturity. Maturity levels are described in Table 5.

Appraisal Method
FAA developed the FAM, which includes several variations.
The full internal appraisal is similar to the CMM-Based Ap-
praisal for Internal Process Improvement [11] method, except
it has been adapted to a continuous model with both process
area goals and capability level goals. Other appraisal types
include facilitated discussion, training-based, document-inten-
sive, questionnaire-based, interview-intensive, and external
appraisal (for use by external agencies that may want to ap-
praise the FAA’s process capability).

These appraisal types draw on and adapt from several ap-
praisal methods such as the SE-CMM Appraisal Method
[12], Software Capability Evaluation [13], and Interim Profile
[14]. Again, FAA’s concept is to integrate and draw together

Table 1. FAA-iCMM architecture summary: architectural constructs across
the source models.

Appraisal note: The FAA-iCMM Appraisal Method uses process area goals
and capability level goals as the major rating components during an ap-
praisal. Maturity levels are optionally derived from capability level ratings,
according to the FAA-iCMM definition of maturity level.

to improve any of its process areas to any capability level de-
sired (from 1 to 5).

In addition, goals were added to process areas and capabil-
ity levels. The FAA-iCMM also provides staging that groups
the process areas and generic practices into maturity levels.
This feature provides guidance regarding improving organiza-
tional maturity and regarding “what to focus on next” if
needed. It also allows a summary rating of an organization’s
process maturity (from 1 to 5) if needed. For more informa-
tion on architecture conversion issues, refer to [9, 10].

Traceability
To satisfy its robustness, fidelity, and traceability requirements,
the FAA-iCMM contains extensive tracing tables. These tables
are at the process area level and the practice level and are in-
cluded as part of each process area and base practice descrip-
tion. Additionally, complete mapping tables are provided in an
appendix that helps readers locate where any practice in any of
the source models is mapped in the FAA-iCMM (see [1]).

)0.1.reV(MMCi-AAF
)gnigatShtiwsuounitnoC(

)10.1.reV(MMC-AS
)1.1.reV(MMC-WSdna

)degatS(

)1.1.reV(MMC-ES
)suounitnoC(

)oDuoYtahW(noitatnemelpmI:tcepsAniamoD

)sAP(saerAssecorP saerAssecorPyeK saerAssecorP

esopruP esopruP esopruP

slaoGaerAssecorP slaoG

)sPB(secitcarPesaB ehtfosecitcarPyeK � seitivitcA
demrofreP � erutaeFnommoC

secitcarPesaB

)aerAssecorPamrofrePuoYlleWwoH(noitazilanoitutitsnI:ytilibapaCssecorP

sleveLytilibapaC sleveLytilibapaC

slaoGleveLytilibapaC

)sPG(secitcarPcireneG ehtfosecitcarPyeK
� mrofrePottnemtimmoC �
� mrofrePotytilibA �
� sisylanAdnatnemerusaeM �
� noitatnemelpmIgniyfireV �

serutaeFnommoC

secitcarPcireneG

)txeNnosucoFottahW(ytirutaMlanoitazinagrO:gnigatS

sleveLytirutaM sleveLytirutaM

CROSSTALK The Journal of Defense Software Engineering 17November 1998

Smart Buying with the Federal Aviation Administration’s Integrated Capability Maturity Model

*Some of the practices in this process area contributed to the practices integrated into the FAA-iCMM process area.

Table 2. The integrated process areas of the FAA-iCMM.

MMCi-AAF
noisreV aerAssecorP0.1

MMC-ESgnireenignEsmetsyS
noisreV aerAssecorP1.1

MC-ASnoitisiuqcAerawtfoS M
noisreV aerAssecorPyeK10.1

MMC-erawtfoSgnireenignEerawtfoS
noisreV aerAssecorPyeK1.1

sessecorPgnireenignEroelcycefiL

sdeeN10AP dnasdeeNremotsuCdnatsrednU
snoitatcepxE

stnemeriuqeR20AP stnemeriuqeRetacollAdnaevireD tnemeganaMdnatnempoleveDstnemeriuqeR tnemeganaMstnemeriuqeR
)gnireenignEtcudorPerawtfoS*(

erutcetihcrA30AP erutcetihcrAmetsySevlovE)gnireenignEtcudorPerawtfoS*(

sevitanretlA40AP etadidnaCezylanA S noitulo s

gnicruostuO50AP sreilppuShtiwetanidrooC noitaticiloS tnemeganaMtcartnocbuSerawtfoS

tnempoleveDerawtfoS60AP
ecnanetniaMdna

gnireenignEtcudorPerawtfoSnoitargetnI70AP metsySetargetnI

dnatseTmetsyS80AP
noitaulavE

metsySetadilaVdnayfireV noitaulavE

noitisnarT90AP troppuSotnoitisnarT

noitulovEtcudorP01AP noitulovEeniLtcudorPeganaM

sessecorPtcejorProtnemeganaM

tnemeganaMtcejorP11AP troffElacinhceTnalP
troffElacinhceTlortnoCdnarotinoM

gninnalPnoitisiuqcAerawtfoS
tnemeganaMtcejorP

tnemeganaMecnamrofrePtcejorP

gninnalPtcejorPerawtfoS
kcarTtcejorPerawtfoS gni thgisrevOdna

tnemeganaMerawtfoSdetargetnI

tnemeganaMtcartnoC21AP)sreilppuShtiwetanidrooC*(kcarTtcartnoC gni thgisrevOdna
tnemeganaMecnamrofrePtcartnoC

tnemeganaMtcartnocbuSerawtfoS

tnemeganaMksiR31AP ksiReganaM tnemeganaMksiRnoitisiuqcA)tnemeganaMerawtfoSdetargetnI*(

noitanidrooC41AP senilpicsiDetargetnI noitanidrooCpuorgretnI

)tnednepeDesahPelcycefiLtoN(sessecorPgnitroppuS

dnaecnarussAytilauQ51AP
tnemeganaM

ytilauQerusnE ecnarussAytilauQerawtfoS

tnemeganaMnoitarugifnoC61AP noitarugifnoCeganaM tnemeganaMnoitarugifnoCerawtfoS

weiveRreeP71AP serutaeFnommoC3leveL sweiveRreeP

tnemerusaeM81AP serutaeFnommoC4leveL tnemeganaMssecorPevitatitnauQ
tnemeganaMnoitisiuqcAevitatitnauQ

tnemeganaMssecorPevitatitnauQ
tnemeganaMytilauQerawtfoS

noitneverP91AP serutaeFnommoC5leveL noitneverPtcefeD

sessecorPlanoitazinagrO

ssecorPlanoitazinagrO02AP
noitinifeD

noitazinagrOenifeD � gnireenignEsmetsySs
ssecorP

ecnanetniaMdnanoitinifeDssecorP sucoFssecorPlanoitazinagrO
noitinifeDssecorPlanoitazinagrO

ssecorPlanoitazinagrO12AP
tnemevorpmI

noitazinagrOevorpmI � smetsySs
ssecorPgnireenignE

tnemevorpmIssecorPsuounitnoC tnemeganaMegnahCssecorP

gniniarT22AP egdelwonKdnasllikSgniognOedivorP margorPgniniarT margorPgniniarT

noitavonnI32AP troppuSgnireenignEsmetsySeganaM
tnemnorivnE

tnemeganaMnoitavonnInoitisiuqcA tnemeganaMegnahCygolonhceT

18 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

various appraisal methods, just as it
integrated its source CMMs. All FAM
variations are tailorable and cover needs
for initial, interim, or full appraisal.

Real-World Use of the Model
The FAA’s CMM integration goals are to
increase the efficiency and effectiveness
of FAA processes and process improve-
ment efforts. Increased efficiency is
being realized by reducing the number
of process areas from 52 in the separate
models to 23 in the integrated model, by
replacing separate training and appraisals
against three CMMs with efforts against
one model, and by replacing largely
redundant efforts to improve similar

processes with a single effort to improve
an integrated process. Increased effective-
ness is being realized through develop-
ment of processes that cover all FAA
acquisition lifecycle phases and that
integrate the management, engineering,
and acquisition activities of an integrated
product team.

FAA management adopted the FAA-
iCMM by setting an aggressive improve-
ment goal for FAA’s major software-
intensive programs to achieve maturity
Level 2 by December 1999 and Level 3
by December 2001. In the first year of
FAA-iCMM usage, over 1,250 managers
and practitioners were trained, and
about 20 programs (including the tar-

geted “major” programs, plus programs
voluntarily signing up) are using the
model to guide their process improve-
ment. FAA-iCMM process improve-
ment workshops and appraisals are find-
ing that the model raises and promotes
resolution of process integration issues
across the disciplines and across the
acquisition lifecycle. Working to im-
prove the Requirements and the Transi-
tion process areas for example (both
staged at maturity Level 2) has required
extensive cross-directorate, cross-disci-
pline, and cross-lifecycle participation.

A major appraisal has recently been
conducted to determine interim status,
to facilitate process improvement plan
adjustment, and to promote even
broader discussions and learning about
process improvement. Meanwhile, the
FAA process improvement goal is being
strengthened to include new programs as
they are initiated.

Other government organizations,
including Warner Robins Air Logistics
Center and the Internal Revenue Ser-
vice, have received FAA-iCMM training
and are looking toward adopting an
integrated approach to process improve-
ment. Several companies, including
Lockheed Martin, have also expressed
interest.

Other models may be included in
future versions of the FAA-iCMM, (such
as models generated from the govern-
ment-industry-SEI Capability Maturity
Model Integration [15] project) and
other disciplines (including Human
Factors and Information Security) are
now being studied for inclusion. The
model is available in the public domain
for organizations seeking to improve
their acquisition processes.

Summary and Conclusions
CMMs provide valuable guidance to
organizations committed to process
improvement. When an organization
needs to use multiple CMMs to cover its
business needs, however, CMM-based
process improvement can become costly
and confusing because of the differences
in CMM architecture, terminology,
appraisal methods, etc. The FAA endeav-
ored to solve this problem by integrating
three CMMs into the FAA-iCMM,

Table 3. Purpose, goals, and base practice list of the Requirements process area of the FAA-iCMM.

PPPPPurpose:urpose:urpose:urpose:urpose: The Requirements process area develops requirements to meet the customer’s operational
need, to analyze the system and other requirements, to derive a more detailed and precise set of
requirements, and to manage those requirements throughout the acquisition lifecycle.

GoalsGoalsGoalsGoalsGoals
1. Requirements are derived from customer needs and other appropriate sources (BP 02.01, BP

02.02, BP 02.03, BP 02.04).
2. Requirements are allocated to support the synthesis of solutions (BP 02.05).
3. Requirements are unambiguous, traceable, and verifiable (BP 02.06, BP 02.09).
4. Requirements are controlled to establish a baseline for engineering and management use (BP

02.07, BP 02.09).
5. Plans, products, and activities are kept consistent with requirements (BP 02.08, BP 02.09).
Base Practice ListBase Practice ListBase Practice ListBase Practice ListBase Practice List
BP 02.01BP 02.01BP 02.01BP 02.01BP 02.01 Develop detailed operational conceptDevelop detailed operational conceptDevelop detailed operational conceptDevelop detailed operational conceptDevelop detailed operational concept: Develop a detailed operational concept of

the interaction of the system, the user, and the environment that satisfies the
operational need.

BP 02.02BP 02.02BP 02.02BP 02.02BP 02.02 Identify key requirements: Identify key requirements: Identify key requirements: Identify key requirements: Identify key requirements: Identify key requirements that have a strong influence on
cost, schedule, functionality, risk, or performance.

BP 02.03BP 02.03BP 02.03BP 02.03BP 02.03 Derive and partition requirements: Derive and partition requirements: Derive and partition requirements: Derive and partition requirements: Derive and partition requirements: Derive and partition requirements that may be
logically inferred and implied as essential to system effectiveness from the system and
other, e.g., environmental, requirements.

BP 02.04BP 02.04BP 02.04BP 02.04BP 02.04 Identify interface requirements: Identify interface requirements: Identify interface requirements: Identify interface requirements: Identify interface requirements: Identify the requirements associated with external
interfaces to the system and interfaces between functional partitions or objects.

BP 02.05BP 02.05BP 02.05BP 02.05BP 02.05 Allocate requirements: Allocate requirements: Allocate requirements: Allocate requirements: Allocate requirements: Allocate requirements to functional partitions, objects,
people, or support elements to support synthesis of solutions.

BP 02.06BP 02.06BP 02.06BP 02.06BP 02.06 Analyze requirements:Analyze requirements:Analyze requirements:Analyze requirements:Analyze requirements: Analyze requirements to ensure that they can be
implemented, verified, and validated by methods available to the development effort.

BP 02.07BP 02.07BP 02.07BP 02.07BP 02.07 Capture and baseline requirements: Capture and baseline requirements: Capture and baseline requirements: Capture and baseline requirements: Capture and baseline requirements: Capture, baseline, and place under change
control the system and other requirements, derived requirements, derivation rationale,
allocations, traceability, and requirements status.

BP 02.08BP 02.08BP 02.08BP 02.08BP 02.08 Analyze and incorporate requirements changesAnalyze and incorporate requirements changesAnalyze and incorporate requirements changesAnalyze and incorporate requirements changesAnalyze and incorporate requirements changes: Analyze all requirements change
requests for impact on the product being acquired, and upon approval, incorporate the
approved changes into the product, work plans, and activities.

BP 02.09BP 02.09BP 02.09BP 02.09BP 02.09 Maintain consistency and traceability: Maintain consistency and traceability: Maintain consistency and traceability: Maintain consistency and traceability: Maintain consistency and traceability: Maintain consistency and traceability
among requirements and between requirements and plans, work products, and
activities.

CROSSTALK The Journal of Defense Software Engineering 19November 1998

Smart Buying with the Federal Aviation Administration’s Integrated Capability Maturity Model

Acknowledgments
The FAA-iCMM is the collaborative
work of many individuals, and I ac-
knowledge the contributions of FAA-
iCMM participants including our spon-
sor and adviser, Art Pyster, our SEI
advisers Roger Bate and Suzanne Garcia,
the author team, and all our reviewers,
buddies, and support staff who helped
create this model. Model creation was
just the beginning of our work, however,
and without the support, commitment,
and engagement of FAA management,
process groups, and participating pro-
grams, this model would only be
shelfware. Thank you for your continu-
ing efforts to improve FAA processes,
using the FAA-iCMM. u

About the Author
Linda Ibrahim is the
process improvement
lead at the FAA. She is
chairwoman of the
Corporate SEPG and is
the project leader, archi-
tect, and lead author of

the FAA-iCMM. She is a member of the
steering group for the CMM Integration
effort. She worked in software engineering
for more than 30 years. She was a senior
member of the technical staff for several
years at the SEI, and other previous em-
ployers include corporations, universities,
governments, and research centers in the
United States, Europe, and the Middle
East. She has a bachelor’s degree in math-
ematics from Duke University and a
master’s degree in information science and
a doctorate in electrical engineering from
the University of Hawaii.

Federal Aviation Administration
800 Independence Avenue SW
Washington, DC 20591
Voice: 202-267-7443
Fax: 202-267-5080
E-mail: linda.ibrahim@faa.dot.gov

References
1. Ibrahim, Linda, et al., The Federal Avia-

tion Administration Integrated Capability
Maturity Model, Version 1.0, Federal
Aviation Administration, November
1997, http://www.faa.gov/ait/sepg.

2. Paulk, Mark, et al., Capability Maturity
Model for Software, Version 1.1, CMU/
SEI-93-TR-24 and CMU/SEI-93-TR-

Table 4. Capability level summary.

thereby reducing overlap and redundan-
cies yet capturing the features of all three
models. Following the latest CMM
integration guidance available, the FAA-
iCMM is the first proof of concept that
CMM integration can work. This inte-
grated CMM can be used to improve the
processes used by system engineers,

software engineers, and acquisition prac-
titioners as they work together in inte-
grated product teams to acquire systems.
For acquisition organizations, the FAA-
iCMM provides guidance for smart
buying.

Description: Description: Description: Description: Description: Base practices of the process area are generally performed.
Generic PGeneric PGeneric PGeneric PGeneric Practice:ractice:ractice:ractice:ractice:

1.1 Perform the process.
Description: Description: Description: Description: Description: Basic management processes are established. The necessary
process discipline is in place to repeat earlier successes with similar work
processes. Performance of the base practices in the process area is planned and
tracked.
Goal:Goal:Goal:Goal:Goal: The activities for the process are institutionalized to support a repeatable
process.
Generic PGeneric PGeneric PGeneric PGeneric Practices:ractices:ractices:ractices:ractices:

2.1 Establish policy. 2.8 Manage configurations.
2.2 Allocate adequate resources. 2.9 Assess process compliance.
2.3 Assign responsibility. 2.10 Verify work products.
2.4 Ensure training. 2.11 Measure process.
2.5 Document the process. 2.12 Review status.
2.6 Plan the process. 2.13 Take corrective action.
2.7 Use a repeatable process. 2.14 Coordinate within the project.

DesDesDesDesDescccccription: ription: ription: ription: ription: Base practices are performed according to a well-defined process
using approved, tailored versions of standard documented processes.
Goal:Goal:Goal:Goal:Goal: The activities of the process are institutionalized to support a defined process.
Generic PGeneric PGeneric PGeneric PGeneric Practices:ractices:ractices:ractices:ractices:

3.1 Standardize the process. 3.3 Perform reviews with peers.
3.2 Use defined process. 3.4 Coordinate with affected groups.

Description: Description: Description: Description: Description: Processes and products are quantitatively measured, understood,
and controlled; detailed measures of performance are collected and analyzed.
Goal: Goal: Goal: Goal: Goal: The activities of the processes are institutionalized to support quantitative
management of defined processes.
Generic PGeneric PGeneric PGeneric PGeneric Practices:ractices:ractices:ractices:ractices:

4.1 Establish quality objectives for product and process.
4.2 Select processes for measurement.
4.3 Select measures for the process.
4.4 Determine quantitative process capability.
4.5 Use quantitative process capability.

Description: Description: Description: Description: Description: Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and technologies.
A focus on widespread, continuous improvement permeates the organization.
The organization establishes quantitative performance goals for process
effectiveness and efficiency based on its business goals.
Goal: Goal: Goal: Goal: Goal: Continually improving processes are deployed throughout the
organization.
Generic PGeneric PGeneric PGeneric PGeneric Practices:ractices:ractices:ractices:ractices:

5.1 Perform continual process improvement on the organizational standard
and tailored processes.

5.2 Implement improved processes.

Level 1 – InitialInitialInitialInitialInitial:::::
PPPPPerformederformederformederformederformed
InformallyInformallyInformallyInformallyInformally
Level 2 –

RepeatableRepeatableRepeatableRepeatableRepeatable:::::
PlannedPlannedPlannedPlannedPlanned

andandandandand
TTTTTrackedrackedrackedrackedracked

Level 3 –
Defined:Defined:Defined:Defined:Defined:

WellWellWellWellWell
DefinedDefinedDefinedDefinedDefined

Level 4 –
Managed:Managed:Managed:Managed:Managed:

QuantitativelyQuantitativelyQuantitativelyQuantitativelyQuantitatively
ControlledControlledControlledControlledControlled

Level 5 –
OptimizingOptimizingOptimizingOptimizingOptimizing:::::

ContinuouslyContinuouslyContinuouslyContinuouslyContinuously
ImprovingImprovingImprovingImprovingImproving

20 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

25, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., February 1993.

3. Bate, Roger, et al., A Systems Engineering
Capability Maturity Model, Version 1.1,
SECMM-95-01, CMU/SEI-95-MM-
003, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., November 1995.

4. Ferguson, Jack, et al., Software Acquisi-
tion Capability Maturity Model (SA-
CMM), Version 1.01, CMU/SEI-96-TR-
20, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh,
Pa., December 1996.

5. Federal Aviation Administration Acquisi-
tion Management System, June 1997.

6. Ibrahim, Linda, “An Analysis of Three
Capability Maturity Models and Their
Relationship to the Acquisition Man-
agement System,” Federal Aviation
Administration, Technical Report,
December 1996.

7. Ibrahim, Linda, “Improving Processes
Across Three CMMs – Case Study
Requirements Processes,” Federal Avia-

tion Administration, Technical Report,
November 1996.

8. Common CMM Framework, Draft E,
Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Sep-
tember 1997.

9. Ibrahim, Linda, “CMM Integration at
the Federal Aviation Administration,”
SEPG ’98 Proceedings, Chicago, Ill.,
March 1998.

10. Ibrahim, Linda, “The Federal Aviation
Administration’s Integrated Capability
Maturity Model,” Systems Engineering
and Software Symposium – Lockheed
Martin, New Orleans, La., May 1998.

11. Dunaway, Donna, et al., CMM-Based
Appraisal for Internal Process Improvement:
Method Description, CMU/SEI-96-TR-
007, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., April 1996.

12. Garcia, Suzanne, et al., A Description of
the Systems Engineering Capability Matu-
rity Model Appraisal Method, Version 1.0,
CMU/SEI-94-HB-05, Software Engi-
neering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pa., June 1995.

13. Byrnes, Paul, et al., Software Capability
Evaluation, Version 3.0, Method Descrip-
tion, CMU/SEI-96-TR-002, Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., April 1996.

14. Hayes, Will, et al., Interim Profile Method
Description Document, CMU/SEI-95-
SR-015, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., 1995.

15. Schaeffer, Mark D., “Capability Matu-
rity Model Process Improvement,”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
May 1998.

Table 5. Maturity level summary.

Level 2 PLevel 2 PLevel 2 PLevel 2 PLevel 2 Process Areasrocess Areasrocess Areasrocess Areasrocess Areas
LifecyclLifecyclLifecyclLifecyclLifecycleeeee /Engineering P/Engineering P/Engineering P/Engineering P/Engineering Processes:rocesses:rocesses:rocesses:rocesses: PA 01 Needs, PA 02 Requirements, PA 05 Outsourcing, PA
08 System Test and Evaluation, PA 09 Transition.
ManagemenManagemenManagemenManagemenManagementtttt /P/P/P/P/Project Project Project Project Project Processes:rocesses:rocesses:rocesses:rocesses: PA 11 Project Management, PA 12 Contract Management.
Supporting PSupporting PSupporting PSupporting PSupporting Processes: rocesses: rocesses: rocesses: rocesses: PA 15 Quality Assurance and Management, PA 16 Configuration
Management.
The above process areas should be at Level 2 (or higher) capability according to an FAA-iCMM
appraisal.
Level 3 PLevel 3 PLevel 3 PLevel 3 PLevel 3 Process Areasrocess Areasrocess Areasrocess Areasrocess Areas
LifecyclLifecyclLifecyclLifecyclLifecycleeeee /Engineering P/Engineering P/Engineering P/Engineering P/Engineering Processes:rocesses:rocesses:rocesses:rocesses: PA 03 Architecture, PA 04 Alternatives, PA 06 Software
Development and Maintenance, PA 07 Integration.
ManagemenManagemenManagemenManagemenManagementtttt /P/P/P/P/Project Project Project Project Project Processes:rocesses:rocesses:rocesses:rocesses: PA 13 Risk Management, PA 14 Coordination.
Supporting PSupporting PSupporting PSupporting PSupporting Processes:rocesses:rocesses:rocesses:rocesses: PA 17 Peer Review.
Organizational POrganizational POrganizational POrganizational POrganizational Processes: rocesses: rocesses: rocesses: rocesses: PA 20 Organization Process Definition, PA 22 Training.
All Level 2 process areas plus all Level 3 PAs should be at Level 3 (or higher) capability.
Level 4 PLevel 4 PLevel 4 PLevel 4 PLevel 4 Process Areasrocess Areasrocess Areasrocess Areasrocess Areas
LifecyclLifecyclLifecyclLifecyclLifecycleeeee /Engineering P/Engineering P/Engineering P/Engineering P/Engineering Processes:rocesses:rocesses:rocesses:rocesses: PA 10 Product Evolution.
Supporting PSupporting PSupporting PSupporting PSupporting Processes:rocesses:rocesses:rocesses:rocesses: PA 18 Measurement.
All Level 2, 3, and 4 process areas of the FAA-iCMM should be at capability Level 4 (or higher).
Level 5 PLevel 5 PLevel 5 PLevel 5 PLevel 5 Process Areasrocess Areasrocess Areasrocess Areasrocess Areas
Supporting PSupporting PSupporting PSupporting PSupporting Processes:rocesses:rocesses:rocesses:rocesses: PA 19 Prevention.
Organizational POrganizational POrganizational POrganizational POrganizational Processes: rocesses: rocesses: rocesses: rocesses: PA 21 Organization Process Improvement, PA 23 Innovation.
All process areas of the FAA-iCMM should be at capability Level 5.

We have a Software Quality Engineering (SQE)
Starter Kit to introduce you to the basics and an SQE
Technical Report for more detailed information.

If your organization needs professional help, we can
provide expert tailored consulting in any area of Software
Quality. If you prefer, we offer workshops on Software

Need Information on
Software Quality Engineering?

Quality Assurance, Software Inspections, Moderat-
ing Inspections, Facilitated Inspection Process Defi-
nition, Defect Prevention, and Software Reliability.

You can find all this information on our Web site http:/
/www.stsc.hill.af.mil/sqe or call us at 801-775-4399 or E-
mail sqe@stsc1.hill.af.mil for any help you may need.

CROSSTALK The Journal of Defense Software Engineering 21November 1998

Increased demand for reliable
and useful software applications
has led to generations of advance-

ments in software languages and devel-
opment environments. Examples include
• The evolution from early languages,

such as assembly language, to
higher-order languages and fourth-
generation languages.

• The development and implementa-
tion of frameworks or software engi-
neering environments that are
populated with any number of pro-
ductivity tools.

• The development of graphical (or
visual) front-ends for existing com-
puter languages called VPEs.

• The development and use of VLs
that allow developers to generate
applications entirely within a visual
environment.
Currently, the use of VPEs and VLs

for general-purpose programming is
undergoing such rapid adoption that it
could be called a visual explosion. Appli-
cations developed using VPEs and VLs
are developed rapidly and differently
from applications based entirely on
textual languages. It is important to
understand these differences and to
approach managing projects that use
VPEs and VLs in a way that will allow
effective project control, i.e., delivering
quality software on time and within
budget without interfering with the
advantages inherent in the use of visual
tools.

Definitions
The following definitions are used to
help form a context for the tools used
to build applications visually.

• Visual Language – A computer
language that uses a visual syntax,
such as pictures or forms, to express
programs. Text can be part of a
visual syntax.

• VL Taxonomy – A system to clas-
sify VLs.

• Visual Programming – Software
development that uses a visual rep-
resentation of the software and
allows developers to create software
through managing and manipulat-
ing objects on a visual palette. Also
called graphical programming.

• Visual Programming Environment –
The graphical user interface (GUI)
and graphical tools that are used to
manage and manipulate objects on a
visual palette, construct programs,
interface with other software, man-
age the software, and execute the
software.
This article provides a summary of

recent research concerning the use of
VLs and VPEs. The study reviewed the
state of the practice for developing
software using VLs and managing the
development activities. Our research
revealed that there is little evidence of
the use of mature practices and recom-
mends candidate metrics for VLs and
VPEs as a first step toward a method to
estimate the effort required to develop
software using VLs and VPEs.

Purpose of the Research
VLs and VPEs are being studied to
learn how to estimate and manage soft-
ware development using these new
languages and environments. The goals
of this initial research are to

• Identify “countables” or metrics
related to VL and VPE development
processes and software products.

• Develop an estimation model for
software developed visually, i.e.,
using VLs and VPEs.
VLs and VPEs are of interest be-

cause they are presently being used to
develop real applications in a range of
sizes and degrees of criticality. Examples
include
• GUI and GUI-related application

development.
• Database search engines, e.g., visual

query languages.
• Data capture and maintenance.
• Real-time data presentation.
• Space-qualified guidance, naviga-

tion, and control.
• Other real-time control systems,

including aerospace and automotive
applications.
With all this activity, little evidence

has been found that mature practices
are being used to manage development
using VLs and VPEs. These types of
languages are reported to be “fun to
use,” and the literature has yet to ad-
dress the management issues that may
be involved in moving from a textual
model to a visual model of software
development.

In addition, no evidence was found
that groups using VLs and VPEs use a
repeatable method to estimate develop-
ment cost, effort, size, or schedule. The
issues of developing large-scale applica-
tions where formal estimates and man-
agement tracking are important have
only recently been addressed at any level,
and the research is still in its infancy.

Metrics for Visual Software Development
Initial Research and Findings

Paul A. Szulewski, Mercury Computer Systems
Faye C. Budlong, Draper Laboratory

This article provides a summary of recent research that investigated the use of visual languages (VLs)
and visual programming environments (VPEs). The study reviewed the state of the practice for devel-
oping software using VLs and managing these development activities. The study concluded that there
is little evidence of the use of mature practices and recommends candidate metrics for VLs and VPEs
as a first step toward a method to estimate the effort required to develop software using VLs and VPEs.

22 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

Initial Results
The research focused on six specific
areas:
• Finding definitions for visual lan-

guages.
• Identifying examples of commercially

available VL and VPE products.
• Identifying published productivity

gains and other benefits of using VLs
and VPEs.

• Finding evidence of VL and VPE use
in government software applications.

• Examining current VL-related mea-
surement work.

• Identifying potential metrics for VL
and VPE development.

Examples
Tables 1 and 2 provide a limited set of
examples of commercially available VLs
and VPEs, respectively. The examples
provide comparisons between VLs and
VPEs, e.g., the output from a VPE
generally is code for a specific textual
programming language, and they indi-
cate the variety of domains currently
served by VLs and VPEs.

Advantages and
Disadvantages
Developing software visually has a
number of advantages and disadvan-
tages, which are summarized in the
following paragraphs. Support for the
advantages regarding quick results and
potential increases in developer produc-
tivity are documented in the literature
on visual programming. For example,
• An empirical study reports that it is

easier to write programs visually
than textually [1].

• Comparative studies report that
there is a four to 10 times produc-

tivity gain over traditional program-
ming techniques when working in a
visual environment [2].

• A more recent empirical study con-
cludes that visual representation
improves human performance [3].

Advantages
Advantages gained through using VLs
and VPEs include the following:
• They provide an opportunity for

domain engineers, rather than soft-
ware engineers, to develop software
applications.

• Visual communication is intuitive—
visual communication uses pictures
rather than words (code).

• They provide quick initial results—
you can examine the results some-
times within hours rather than
months.

• Rather than using formal specifica-
tions to guide development, they
provide a means to implement par-
ticipatory development approaches
using prototyping techniques and
“conversations.”

• They take advantage of powerful
workstations and tools by providing

the capability to work with pictures
rather than words.

• They provide the potential to in-
crease software development pro-
ductivity.

• They provide the potential to lower
lifecycle costs.

Disadvantages
There are some potential problems that
may be expected from using VLs and
VPEs. These disadvantages are derived
from discussions with managers and
software developers who work with VLs
and VPEs.
• VLs and VPEs require a new way of

doing business throughout the soft-
ware lifecycle, including develop-
ment, test, acceptance, and mainte-
nance—the rules have been
significantly changed.

• Programmers (or software engi-
neers) are not required; however, the
quality of software produced by
domain engineers may be suspect.
(It is too easy to jump right in and
program.)

• No industry standards are in place to
control the visual languages and
environments. More traditional
languages, e.g., C and Ada, are stan-
dardized through concurrence of
members of the software engineering
community and maintenance by
standards organizations. This control
does not yet exist for VLs and VPEs.

• Little or no formal qualification is
done for new applications because
of the lack of specifications and
known requirements.

• Often, especially for VLs, the bind-
ings to other languages are weak or
nonexistent.

Table 1. Examples of commercially available VLs.

Table 2. Examples of commercially available VPEs.

gnimmargorPlausiV
tnemnorivnE

retupmoC
tuptuOegaugnaL

rodneV sniamoD

remmargorPlautriV 59adAdna++C PROCZV tnempoleveDdesaB-tnenopmoCesopruPlareneG

XxirtaM yrateirporP,59adA,C
egaugnaLgnitpircS

ISI smetsySlortnoC

PXV fitoM FSOmorfeerF snoitacilppAXrofredliuBIUG

éfaC avaJ cetnamyS snoitacilppAtenartnIdnatenretnI

egaugnaL rodneV sniamoD

WEIVbaL stnemurtsnIlanoitaN noitisiuqcAataD , sisylanA , yalpsiDdna

redliuBteNsuirotciP/hpargorP suirotciP snoitacilppAhsotnicaM

redliuBppAlausiV llevoN snoitacilppArevreSswodniW

EEV drakcaPttelweH tnempiuqEtseT

redliuBrewoP yrdnuoFerawtfoSnitsuA snoitacilppAswodniW

CROSSTALK The Journal of Defense Software Engineering 23November 1998

Metrics for Visual Software Development: Initial Research and Findings

• Configuration control is not often
considered, and the visual represen-
tations may be difficult to control
using current commercially available
configuration management tools.

• Development issues can be decep-
tively complex.

• The apparent ease of use for these
tools invites abuse.

New Development Models
New software development models are
rapidly evolving as VL and VPE applica-
tions become more accepted. In general,
these models are typified as being highly
participatory with developers and users
or other domain experts working closely
to develop each application. The appli-
cation tends to be its own “specification”
where little upfront documentation is
developed and “approved” in the tradi-
tional sense of approval.

Participatory development styles
tend to involve developers, users, and
other stakeholders in several ways, in-
cluding
• A conversation model where the

software developer and user work
together with the computer to inter-
actively build an application [4].

• “Memos and demos” that allow
multiple iterations with docu-
mented output, high user visibility,
and minimal specification.

• Evolutionary development using an
integrated small “hot team” that
consists of software developers,
domain engineers, and other stake-

holders to concurrently develop an
application and gain approval of it.
These approaches show many simi-

larities with rapid prototyping, includ-
ing strong user (or customer) interac-
tion during development. The software
is developed, used, and refined as neces-
sary, based on lessons learned, rather
than waiting for traditional qualifica-
tion or validation.

In general, formal milestones, e.g.,
requirements and design reviews, often
are either missing or ill-defined. There
are often no (or limited) formal reviews.
Requirements and design are implicit in
an acceptable application. Usually, the
electronic design as implemented is the
only representation of the application.
There is often either limited or no for-
mal testing. The project is done when
the user and the developer agree that it
is, or when the money runs out.

Critical government application
development using VLs and VPEs have
a somewhat different approach—at-
tempts have been made to integrate
evolutionary development with formal
documentation and decision points.
However, the concept of application
development and testing appears to
need further refinement. Some of the
questions that should be addressed to
provide confidence in these applications
include
• What is a visual software “unit”?
• How detailed are the requirements?
• How do you verify software for

critical applications?
• Is there a new concept of complexity?

Evidence of Government Use
Table 3 provides examples of govern-
ment agencies that have used VLs or
VPEs to help meet their software needs,
the name of the VL or VPE used, the
application domain in which the VL or
VPE is used, and a brief description of
the program or application area. Many
other examples could be cited, but these
provide an indication of the breadth of
government applications being devel-
oped using VLs and VPEs.

VL-Related Software
Measurement
Some inroads have been made into de-
fining measures that are applicable to
VLs and VPEs. Empirical information
has been gathered, as previously dis-
cussed, and some related studies have
been completed. In addition, some com-
mercial information has been developed
that may be applicable to software devel-
oped visually. Examples include
• Studies such as Jeffrey V. Nickerson’s

“Visual Programming” [5] and E.
Glinert’s “Towards Software Metrics
for Visual Programming” [6].

• Commercial information such as
“Project Management for OO De-
velopment” [7] and “Counting a
GUI Application” [8].
This information leads to the con-

clusion that a number of “countables”
can be defined to support definition of
VL metrics. Candidate countables are
discussed in the next section.

Candidate Metrics for VLs and
VPEs
The countable items currently being
considered as candidates for further
research fall into four categories. Ex-
amples of each of these categories along
with possible advantages and disadvan-
tages follow.

Physical Measures
Physical measures are measures of the
outputs from the development effort.
Those identified include the following:
• Run-time memory size, e.g., kilo-

bytes or megabytes of memory.
Advantages: Provides hard data that
can be compared to applications

Table 3. Evidence of government applications using visual languages.

tnemnrevoG
ycnegA

EPVroLV niamoD noitpircseD

LPJ/ASAN WEIVbaL sisylanAataD noissiMoelilaGrofrezylanAataDyrtemeleT

ymrA.S.U WEIVbaL sisylanAataD ecafretnIresUlacihparG

ecroFriA.S.U WEIVbaL ataDtnemurtsnI
sisylanA

looTnoitaulavEnoitatnemurtsnIenolA-dnatS

LPJ/ASAN EEV lortnoCtnemurtsnI scinortcelEthgilFfotseTehttroppuSoterawtfoS

ASAN XxirtaM smetsySlortnoC noitatSecapSlanoitanretnI

ecroFriA.S.U remmargorPlautriV
59adA

stnenopmoCadA EPVderosnopS-eciffOmargorPtnioJadA
noitadilav

24 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

built using traditional textual lan-
guages.
Disadvantages: May not correlate
well with effort for applications
that need to be extremely efficient,
e.g., real-time embedded systems
with processor limitations. Size of
application could grow substan-
tially with unnecessary features, use
of interpretive (rather than com-
piled) languages, etc.

• Processor(s) utilization, e.g., cycle
time, number of cycles used, and
percent of processor resources re-
quired to run an application.
Advantages: Provides hard data that
can be compared to applications
built using traditional textual lan-
guages.
Disadvantages: May not correlate well
with effort for applications that need
to be extremely efficient, e.g., real-
time embedded systems with proces-
sor limitations. Size of application
could grow substantially when pro-
cessor utilization is not considered to
be application critical, e.g., for data
systems or other systems where
memory and processing time do not
need to be optimized. Interpretive
language applications generally use
significantly more processing re-
sources than compiled applications,
may be much easier to develop and
verify, and may provide substantially
less functionality when compared
with compiled counterparts.

• Source lines of code (SLOC)
equivalents, e.g., high-level lan-
guage SLOC outputs from a VPE
and functional cell contents from a
spreadsheet.
Advantages: SLOC are still the most
used indicators of application size
and allow data to be normalized
based on an understandable con-
cept. The concept of SLOC is gen-
erally understandable to software
managers.
Disadvantages: The concept of
SLOC may not be in any way appli-
cable to some VLs. A clear defini-
tion of SLOC needs to be used
consistently to obtain consistent
results. Where SLOC are automati-
cally generated from a VPE, derived

measures such as descriptiveness
may not be useful or applicable.
There are likely to be differences in
SLOC output depending on
whether the count is of automati-
cally generated code from a VPE or
hand-generated script code that may
be an adjunct to the visual aspects of
a VL or VPE.

Countables in the Visual Medium
These items are entities in the physical
design representation. They include
• Objects (number, semantic com-

plexity), e.g., items on a diagram,
number of diagrams, and complex-
ity of the content of a diagram or
item on a diagram.
Advantages: Objects can be visually
examined and counted. Within a
single language or environment,
object counts should yield repeat-
able results across several applica-
tions. This metric should help to
quantify effort and schedule when
combined with other measures such
as number of connectors, number of
interconnections, and some concept
of inheritance. Some work already
has been completed on complexity
of applications developed with VLs.
Disadvantages: May not be compa-
rable across languages or environ-
ments. May not be easy to estimate
until a design is well under way.

• Connectors (number, data complex-
ity, control complexity), e.g., con-
nectors between items on a diagram
or indicating interfaces to items on
connecting diagrams.
Advantages: Connectors can be visu-
ally examined and counted. Within
a single language or environment,
connector counts should yield re-
peatable results across several appli-
cations. This metric should help
quantify effort and schedule when
combined with other measures such
as number of objects and some
concept of bandwidth.
Disadvantages: May not be compa-
rable across languages or environ-
ments. May not be easy to estimate
until a design is well under way.

OO-Related Measures
These items include measures that have
been developed for object-oriented
(OO) applications. There is an inherent
assumption in these measures that ap-
plications developed visually use an
extended concept of object orientation.
Thus, the candidate measures include
• Inheritance, e.g., depth of inherit-

ance and number of children within
a class.
Advantages: Can be counted in a
design medium. If OO develop-
ment techniques are used, will pro-
vide one of the primary OO mea-
sures of complexity.
Disadvantages: Provides a secondary
input to estimation needs. Provides
a measure of complexity more than
a measure of size. May be useful to
support estimates of test effort for
an OO application. VL develop-
ment may not use OO techniques.

• Encapsulation, e.g., measures of
how well a class (with its subclasses)
provides information hiding and
consistent object representation
from a single (or minimal number
of) source(s). Examples are lack of
cohesion in methods or coupling
between classes.
Advantages: Measures of encapsula-
tion provide an indication of the
quality and maintainability of an
OO application. Can be counted in
a design medium. Also provide an
indication of the effort required to
test an application thoroughly.
Disadvantages: Provides a secondary
input to estimation needs. Provides
measures of design quality, under-
standability, and complexity more
than measures of size. May be useful
to support estimates of test effort for
an OO application. VL develop-
ment may not use OO techniques.

• Number of interconnections, e.g.,
counts of “uses” and “used by” for a
class or all classes within an applica-
tion. Also could be counts of inter-
faces with external items.
Advantages: Combined with number
of classes in an application, provides
a primary indication of application
size and a “quick” estimate of appli-
cation complexity. Can be counted

CROSSTALK The Journal of Defense Software Engineering 25November 1998

Metrics for Visual Software Development: Initial Research and Findings

in a design medium. Probably most
useful for estimate refinement dur-
ing design. Could be useful for
visual applications that do not use
OO techniques.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
prior to the completion of a design.
May be best used for estimate re-
finement during development or to
estimate the effort required for
maintenance activities.

Function Point-Related Measures
Function points have been developed
and used successfully for a number of
years. Classical function points and
extensions to function points could be
applicable to estimates of effort for
applications developed using VLs and
VPEs. The applicable measures could
include
• Function points, as defined in the

International Function Point Users
Group counting practices manual
[8].
Advantages: Provides a well-docu-
mented and understood approach to
derive estimates of size, effort, and
schedule for software applications.
Can be counted in a design me-
dium. Although function points
have been shown to be useful in the
information systems domain, some
advocates claim that extensions,
such as object points and feature
points, can be adapted for OO and
real-time applications.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
until a reasonable amount of time
has been expended on design. For
maintenance, there has been little
success with the development of any
automated code analysis tool that
can count function points in a com-
pleted application. Function point
counting is complex and probably
will need some adaptation for VL
applications.

• Object points, e.g., counts of ob-
jects in an OO development envi-
ronment.

Advantages: Can be counted in a
design medium. Can be used to
develop size estimates for OO appli-
cations. May be useful for VL appli-
cations that do not use OO devel-
opment techniques. May be useful
in combination with counting ob-
jects on a visual palette.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
until a reasonable amount of time
has been expended on design.
Counts of abstract objects and their
utility to estimate VL or VPE appli-
cations is unclear.

• Feature points, e.g., extensions to
function points to account for the
effort required to implement algo-
rithms for real-time applications.
Advantages: Provides a well-docu-
mented approach to derive estimates
of size, effort, and schedule for soft-
ware applications that have real-time
constraints.
Disadvantages: Requires interpola-
tion and may need to be combined
with other metrics, e.g., SLOC
estimates, to incorporate the algo-
rithmic information necessary to
develop cost and effort estimates.
Not easy to define or implement.
May not be available early enough
in the software lifecycle to support
effort estimation until a reasonable
amount of time has been expended
on design. May not be “countable”
in completed applications.

Next Steps
This research has identified a gap in the
state of software development practice
for estimation and measurement. Sev-
eral of the practitioners of VLs and
VPEs we contacted in the course of this
research (including government organi-
zations, academia, consultants, and
industry) share our interest in continu-
ing this work and have expressed the
desire to form a special interest group
or consortium.

We are actively seeking sponsorship
and collaborators to continue this
work. We have a plan to develop, using
the combined expertise of our collabo-
rators, and verify a metrics-based effort

estimation model for VLs and VPEs.
Once the estimation model is devel-
oped and validated, the technology will
be made available to the software com-
munity at large. u

Acknowledgments
This work was funded by the U.S. Air
Force Embedded Computer Resources
Support Improvement Program (ESIP).

During the course of this research,
we knocked on many doors to obtain
the information we required to perform
this research. To our surprise, we found
many doors open and with “welcome”
signs up. We acknowledge the interest
and support of
• Lt. Col. Joe Jarzombek (U.S. Air

Force), ESIP director.
• Bruce Allgood, ESIP office.
• Maj. Joe Stanko (U.S. Air Force),

Office of the Secretary of the Air
Force for Acquisition.

• Joe Kochocki, Draper Laboratory.
• Margret Burnett, Oregon State

University.
• Stan Colby, VZ Corp.
• Ed Baroth, Jet Propulsion Labora-

tory.
• Larry Putnam Jr., Quantitative

Software Measurement.

About the Authors
Paul A. Szulewski has
held a variety of engi-
neering-related technical
and management posi-
tions since 1973. He is
currently technical
program manager for

engineering at Mercury Computer Sys-
tems, Inc. of Chelmsford, Mass. Prior to
his current position, he was at The
Charles Stark Draper Laboratory, Inc. for
nearly 20 years and with Sanders Associ-
ates for five years. He specializes in
project planning, measurement, assess-
ment, and process definition. He is a
founding member of the National Soft-
ware Council, now known as the Center
for National Software Studies. He is a
distinguished reviewer for IEEE Software
and the Pentagon acquisition staff. He
has pioneered research in software metrics
and evaluation methods for products,
processes, and organizations.

see METRICS, page 30

26 CROSSTALK The Journal of Defense Software Engineering November 1998

Software systems continue to have an increasingly
strong impact on vital operations such as military, medi-
cal, and telecommunication systems. For this reason, it is

imperative that we address quality issues that relate to both the
software development process and to the software product.
Our research focuses on process. We are developing a TMM
designed to help software development organizations evaluate
and improve their testing processes [1, 2]. Testing is applied in
its broadest sense to encompass all software quality-related
activities. We believe that improving the testing process thor-
ough application of the TMM maturity criteria will have a
highly positive impact on software quality, software engineer-
ing productivity, and cycle time reduction efforts.

In previous CROSSTALK articles (August 1996, p. 21; Sep-
tember 1996, p. 19), we have reported on our approach to
building Version 1.0 of the TMM [1, 2]. We have also de-
scribed the internal structure of the TMM, including its matu-
rity levels, associated maturity goals, subgoals, activities, tasks,
and responsibilities. In this article, we describe the TMM-AM,
which is designed as a tool with which organizations may
assess, evaluate, and improve their software testing processes.

An Overview of the TMM
Development of the initial version of the TMM, as we have
described in previous articles, was guided by the work done on
the Software Capability Maturity Model, a process improve-
ment model that has received widespread support from the
U.S. software industry [3]. TMM, Version 1.0 has two major
components [1, 2], which are discussed below.

Set of Levels
The characteristics of each level are described in terms of orga-
nizational goals and testing capability. Each level, with the
exception of Level 1, has a structure that consists of
• A set of maturity goals – these identify testing improve-

ment goals that must be addressed and satisfied to achieve
maturity at that level (Figure 1).

• Supporting maturity subgoals – these define the scope,
boundaries, and needed accomplishments for a particu-
lar level.

• Activities, tasks, and responsibilities (ATR) – these address
implementation and organizational adaptation issues at a

specific level. Activities and tasks are defined in terms of
actions that must be performed at a given level to im-
prove testing capability; they are linked to organizational
commitments. Responsibilities are assigned for these
activities and tasks to three groups that represent the key
participants in the testing process: managers, developers
and testers, and users and clients.

The Assessment Model
The TMM-AM can help organizations assess and improve
their testing processes. The TMM (levels, maturity goals,
subgoals, and ATRs) serves as its reference model. The out-
puts of a TMM assessment allow an organization to
• Determine its level of testing maturity (on a scale from

1 to 5).
• Identify its testing process strengths and weaknesses.
• Develop action plans for test process improvement.
• Identify mature testing subprocesses that are candidates

for reuse.
The remainder of this article discusses the TMM-AM in

greater detail.

The TMM-AM: Development Approach
The TMM-AM has the following research objectives.

This article describes a test process assessment model based on the Testing Maturity ModelSM (TMM)
we have reported on in this publication. We discuss the test process assessment procedure, assessment
inputs and outputs, the assessment questionnaire, and team selection and training criteria associ-
ated with the TMM Assessment Model (TMM-AM). Forms and tools to support test process assess-
ment are also described, and we report on preliminary experiments with the TMM questionnaire.

Testing Maturity Model and TMM are service marks of the Illinois Institute
of Technology.

Figure 1. The 5-level structure of the TMM.

A Model to Assess Testing Process Maturity
Ilene Burnstein, Ariya Homyen, Robert Grom, C.R. Carlson

Illinois Institute of Technology

CROSSTALK The Journal of Defense Software Engineering 27November 1998

• Provide a framework, based on a set of principles in which
software engineering practitioners could assess and evaluate
their software testing processes.

• Provide a foundation for test process improvement through
data analysis and action planning.

• Contribute to the growing body of knowledge in software
process engineering.
We have used the Capability Maturity Model (CMM) and

Software Process Improvement and Capability Determination
(SPICE) assessment models to guide development of the
TMM-AM [3-6]. We wanted the resulting TMM-AM to be
CMM Appraisal Framework (CAF) compliant [5] and
integratable with the CMM assessment model so that organi-
zations could one day perform parallel assessments in multiple
process areas. A set of 16 principles has been developed to
support TMM-AM design. For example, a testing process
assessment model should
• Be based on a testing maturity model as its reference

model.
• Support test process improvement so that an organization

can achieve software product and process quality goals.
• Provide a profile of an organization’s testing process

capability.
• Help an organization make decisions about where to im-

prove its testing process in order to achieve testing process
maturity.

• Be integratable with other assessment models.
• Provide high-quality data and repeatable, reliable results.
• Provide visibility to the testing process.

The TMM-AM Components
Based on the 16 principles, the CMM assessment model,
SPICE, and the CAF [3-6], we have identified a set of inputs
and outputs and have developed a set of three components for
the TMM-AM:
• The assessment instrument (a questionnaire).
• The assessment procedure.
• Team training and selection criteria.

A set of inputs and outputs is also prescribed for the
TMM-AM. The relationship between these items is shown in
Figure 2. A discussion of the components follows.

The Assessment Procedure
The TMM-AM assessment procedure consists of a series of
steps that guide an assessment team in carrying out a testing
process self-assessment. The principle goals are to
• Ensure the assessment is executed with efficient utilization

of the organization’s resources.
• Guide the assessment team as to who to interview and how

to collect, organize, and analyze assessment data.
• Support the development of a test process profile and the

determination of a TMM level.
• Guide the assessors in developing action plans for test pro-

cess improvement.
A brief summary of the steps in the assessment procedure
follows:

Preparation
This includes selecting and training the assessment team,
choosing the team leader(s), developing the assessment plan,
selecting the projects, and preparing the organizational units
that are participating in the assessment. A statement of assess-
ment purpose, scope, and constraints is also prepared to guide
the development of the assessment plan.

Conducting the Assessment
The team collects and records assessment information from
interviews, presentations, questionnaires, and relevant docu-
ments. All collected information must be protected by a confi-
dentiality agreement. The TMM level of the organization is
determined by analysis of the collected data and use of a rank-
ing algorithm.

Our TMM-AM ranking algorithm is similar to the algo-
rithm described by S. Masters, et al., in their work on the CAF
[5]. First, it requires a rating of the maturity subgoals, then the
maturity goals, and finally the maturity level [7]. Our “degree
of satisfaction” measure with respect to the maturity subgoals
and goals is more fine-grained than the corresponding measure
in the Masters model. Our purpose was to provide more de-
tailed information to identify test process strengths and weak-
nesses. We also provide guidance for prioritization of goal areas
needed for test process improvement.

Reporting the Assessment Outputs
The TMM-AM outputs include a process profile, a TMM
level, a statement of test process strengths and weaknesses, and
the assessment record. The assessment team prepares the pro-
cess profile, which gives an overall summary of the state of the
organization’s testing process. The profile is based on analysis
of the assessment data and results of the ranking process. The
profile can be presented as a graphical display or in the form of
a matrix that indicates maturity goals and subgoals that are

Figure 2. The TMM assessment process: components, inputs, and outputs.

A Model to Assess Testing Process Maturity

28 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

satisfied, not satisfied, not applicable, or
not rated. The profile also includes the
TMM level, a summary of test process
strengths and weaknesses, and recom-
mendations for improvements.

The assessment record is also com-
pleted in this step. This written account
includes
• Names of assessment team members.
• Assessment inputs and outputs.
• Actual schedules and costs.
• Tasks performed.
• Task durations.
• People responsible.
• Data collected.
• Problems that occurred.

The assessment outputs can be deliv-
ered as a presentation or a written report
(the final assessment report) or both.

Analyzing the Assessment
Outputs
The assessment team uses the assessment
outputs to identify and prioritize goals
for improvement. An approach to
prioritization is described in [7]. Quanti-
tative test process improvement targets
need to be established in this phase so
they can support the action plans devel-
oped in the next step.

Action Planning
An action planning team develops action
plans that focus on improvements in the
high-priority areas identified in the pre-
vious step. The action planning team can
include assessors, Software Engineering
Process Group members, software qual-
ity assurance staff, or opinion leaders
chosen from among assessment partici-
pants [8]. Inputs to action planning
include the final assessment report, the
process profile, and prioritized areas for
improvement.

The action plan describes specific
actions needed to improve existing prac-
tices (and to support the addition of
missing practices) so the organization
can move to the next TMM level. The
action plan, like all other software engi-
neering project plans, should include
measurable goals, tasks, responsibilities,
resources required, risks and benefits,
and reporting and tracking mechanisms.
Action planning can be accomplished
through the convening of a workshop

directed by the action planning team.
The result should be a draft of an action
plan. The workshop members should
also identify pilot projects that will
implement the new process.

Implementing Improvement
Developed and approved action plans
can be applied to selected pilot projects,
which are monitored and tracked to
ensure task progress and achievement of
target goals. Favorable results set the
stage for organizational adaptation of the
new process.

The TMM Assessment
Questionnaire
Assessment instruments are needed to
help collect and record assessment infor-
mation, maintain a record of results, and
provide information for assessment post-
mortem analysis. We use the question-
naire as our assessment instrument be-
cause it
• Supports CAF compliance.
• Facilitates integration with other

process assessment instruments.
• Ensures assessment coverage of all

activities, tasks, and responsibilities
identified in each maturity goal for
each level of the TMM.

• Provides a solid framework in which
to collect and store assessment data.
Our choice was also influenced by

the success of the CMM questionnaire as
an assessment instrument [3]. The
TMM questionnaire consists of eight
parts:
• Instructions for use.
• Respondent background.
• Organizational background.
• Maturity goal and subgoal questions.
• Testing tool use questions.
• Testing trends questions.
• Recommendations for questionnaire

improvement.
• A glossary of testing terms [4, 7].

Components 2 and 3 of the ques-
tionnaire gather information about the
respondent, the organization, and the
projects that will be involved in the
TMM assessment. Maturity goal and
subgoal questions in component 3 are
organized by TMM Version 1.0 levels,
and include a developer or a tester, a
manger, and a client or a user view. The

questions determine to what extent the
organization has in place mechanisms to
achieve the maturity goals and resolve
maturity issues at each TMM level. The
responses are input to the ranking algo-
rithm that determines a TMM level.

The testing tool component records
information about type and frequency of
tool use. This information can help the
action planning team make recommen-
dations for future tool usage. We added
the testing trends section to provide a
perspective on how the testing process in
the organization has evolved over the last
several years. This information helps the
assessment team prepare the assessment
profile and assessment record.

The recommendations component
allows each respondent to give the
TMM-AM developers feedback on the
clarity, completeness, and usability of the
questionnaire. A complete TMM ques-
tionnaire is found in [7]. The question-
naire can also be found on the Web site
noted in the “Forms and Tools for As-
sessment Support” section of this article.

Assessment Training and Team
Selection Criteria
Self-assessment of your organization’s
testing process requires a trained assess-
ment team, the members of which are
selected from within the organization
[7]. Team members should be selected in
a manner that ensures that they under-
stand assessment goals, have the proper
knowledge experience and skills, have
strong communication skills, and are
committed to improving the testing
process. Assessment team size should be
appropriate for the purpose and scope of
the assessment.

We have adapted SPICE guidelines
to select and prepare an effective assess-
ment team [6, 7]. Preparation is con-
ducted by the assessment team leader
who is experienced in TMM assess-
ments. Preparation includes topics such
as an overview of the TMM, process
management concepts, interviewing
techniques, data collection, and data
analysis. Training activities include team-
building exercises, a walk-through of the
assessment process, filling out a sample
questionnaire, performing data analysis,
and learning to prepare final reports.

CROSSTALK The Journal of Defense Software Engineering 29November 1998

Forms and Tools for
Assessment Support
We have developed several forms and
templates and a tool that implements a
distributed version of the TMM ques-
tionnaire to support a TMM assessment
team [7, 9]. These tools are important to
ensure the assessments are performed in
a consistent, repeatable manner, to re-
duce assessor subjectivity, and to ensure
the validity, usability, and comparability
of the assessment results. Tools and
forms also help to collect, formalize,
process, store, and retrieve assessment
information. The tools and forms we
have developed include the Process Pro-
file and Assessment Record forms, which
have been described in previous sections
of this article, and also include
• Team Training Data Recording

Template – This allows the team
leader to record and validate team
training data. This data can be used
in future assessments to make any
needed improvements to the assess-
ment training process.

• Traceability Matrix – This matrix is
filled in as assessment data is col-
lected, allows the assessors to iden-
tify sources of data, resolve data
related issues, and ensure the integ-
rity of the data.

• Web-Based Questionnaire – A com-
plete version of the TMM-AM ques-
tionnaire is at http://
www.csam.iit.edu\~tmm. The Web-
based questionnaire was designed so
that assessment data could easily be
collected from distributed sites and
organized and stored in a central data
repository that could be parsed for
later analysis [9]. Developed using an
HTML-based development tool, it
runs on multiple operating systems,
allowing data collection from users
around the world, thus providing
support for test process assessment to
local and global organizations. A
detailed description of tool develop-
ment is given [9]. The Web-based
questionnaire and links to supporting
information related to the TMM is

found at the above Web site. We
welcome comments and recommen-
dations.

Preliminary Results on
Questionnaire Usage
Two software engineers from different
development organizations have evalu-
ated the TMM questionnaire and have
applied it to three development groups
in their organizations (one engineer
evaluated two groups). Their feedback
helped revise and reorganize some TMM
questions, experiment with our ranking
algorithm using actual industrial data,
generate sample action plans, and study
problems of testing process improve-
ment in real-world environments.

Obtaining and analyzing this indus-
trial data, although on a small scale, has
been useful to our research team. One
interesting result was that all three
groups were evaluated to be at TMM
Level 1, but strengths and weaknesses of
each group were significantly different.
Two groups satisfied several maturity
goals at the higher levels of the TMM.
Given the quality of the existing pro-
cesses for the latter two groups, they
should be able to reach TMM Level 2 in
a relatively short time. More experimen-
tal data is needed to further test the
usefulness and effectiveness of the TMM
and the Assessment Model for test pro-
cess assessment and improvement.

Future Plans
Our future plans include research on
formal integration of TMM and CMM
components so that organizations can
carry out parallel assessments in several
process areas. We also are planning the
development of more intelligent tools
to aid the assessors. Wider industrial
application of the TMM-AM is
planned to help us evaluate its useful-
ness and effectiveness for test process
improvement. u

About the Authors
Ilene Burnstein holds a doctorate from
Illinois Institute of Technology, where she
is an associate professor of computer sci-

ence, teaching under-
graduate and graduate
courses in software engi-
neering. Her research
interests include software
process engineering,
testing techniques and

methods, automated program recognition
and debugging, and software engineering
education.

Computer Science Department
Illinois Institute of Technology
10 West 31st Street
Chicago, IL 60616
Voice: 312-567-5155
Fax: 312-567-5067
E-mail: csburnstein@minna.iit.edu

Ariya Homyen is a
doctoral candidate in
computer science at
Illinois Institute of Tech-
nology. She has a
master’s degree in com-
puter science from the

University of New Haven and a bachelor’s
degree from Chulalongkorn University in
Thailand. Upon completing her doctorate,
she will return to her position at the Min-
istry of Science, Technology, and Energy
in Thailand. Her research interests include
test process improvement, test manage-
ment, and process reuse.

Computer Science Department
Illinois Institute of Technology
10 West 31st Street
Chicago, IL 60616
Voice: 312-567-5150
Fax: 312-567-5067
E-mail: homyari@minna.iit.edu

Robert Grom has a
bachelor’s degree from
Southern Illinois Univer-
sity and a master’s degree
in computer science
from Illinois Institute of
Technology. He has

worked as a hardware engineer and is
currently manager of data collection soft-
ware for SAFCO Technologies, where he
develops software for cellular test equip-
ment. His research interests are software
testing, test process improvement, and
data communications.

SAFCO Technologies, Inc.
6060 N. Northwest Highway

A Model to Assess Testing Process Maturity

30 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

Chicago, IL 60631
Voice: 773-467-2673
Fax: 773-594-2618
E-mail: rag@safco.com

C.R. Carlson holds a
doctorate from the Uni-
versity of Iowa. He is a
professor in the com-
puter science depart-
ment at Illinois Institute
of Technology. He has

published extensively in the fields of data-
base design, information architecture, and
software engineering. His research interests
include object-oriented modeling, design
and query languages, and software process
issues.

Computer Science Department
Illinois Institute of Technology
10 West 31st Street
Chicago, IL 60616
Voice: 312-567-5152
Fax: 312-567-5067

References
1. Burnstein, I., T. Suwanassart, and C.R.

Carlson, “The Development of a Test-
ing Maturity Model,” Proceedings of the
Ninth International Quality Week Con-
ference, San Francisco, May 21-24,
1996.

2. Burnstein, I., T. Suwanassart, and C.R.
Carlson, “Developing a Testing Matu-
rity Model,” CROSSTALK, Software Tech-
nology Support Center, Hill Air Force
Base, Utah; Part I: August 1996, pp.
21-24; Part II: September 1996, pp. 19-
26.

3. Paulk, M., C. Weber, B. Curtis, and M.
Chrissis, The Capability Maturity Model:
Guideline for Improving the Software
Process, Addison-Wesley, Reading,
Mass., 1995.

4. Zubrow, D., W. Hayes, J. Siegel, and D.
Goldenson, “Maturity Questionnaire,”
Technical Report, Software Engineering

METRICS, from page 25

Mercury Computer Systems
199 Riverneck Road
Chelmsford, MA 01824-2820
Voice: 978-256-0052 ext. 320
Fax: 978-256-3599
E-mail: paulski@mc.com
Internet: http://www.mc.com

Faye C. Budlong is a principal member of the
technical staff at The Charles Stark Draper
Laboratory, Inc. in Cambridge, Mass. She
provides expertise in software standards devel-
opment and application, software product
evaluations, software requirements analysis,
standard-compliant software, and document

development within Draper Laboratory. She has a bachelor’s
degree in mathematics from Roger Williams University in
Bristol, R.I. and a master’s degree in education from Northeast-
ern University in Boston, Mass.

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139
Voice: 617-258-2054
Fax: 617-258-3939
E-mail: budlong@draper.com
Internet: http://www.draper.com

References
1. Pandey, R.K. and M. Burnett, “Is It Easier to Write Matrix Ma-

nipulation Programs Visually or Textually? An Empirical Study,”

Proceedings of the 1993 IEEE Symposium on Visual Languages
(VL93), 1993, pp. 344-351.

2. Baroth, E. and C. Hartsough, “Visual Programming in the Real
World,” Visual Programming, M. Burnett, et al., eds., Manning
Publications, 1995.

3. Whitley, K.N., “Visual Programming Languages and the Empiri-
cal Evidence For and Against,” Journal of Visual Languages and
Computing, October 1996.

4. Baroth, E. and C. Hartsough, “Visual Programming Improves
Communication Among the Customer, Developer and Com-
puter,” Presentation at National Instruments User Symposium,
1995.

5. Nickerson, J.V., Visual Programming, Diss., New York Univer-
sity, New York, N.Y., 1994.

6. Glinert, E., “Towards Software Metrics for Visual Program-
ming,” International Journal of Man-Machine Studies, Vol. 330,
Academic Press, 1989, pp. 425-445.

7. Project Management for Object-Oriented Development, Austin
Software Factory, Austin, Texas, 1996.

8. Function Point Counting Practices Manual, International Func-
tion Point Users Group, Waterville, Ohio, Version 4, January
1994.

Note
1. Domain engineers are subject matter experts and may include,

for example, mathematicians and control engineers.

Institute, CMU/SEI-94-SR-7, June
1994.

5. Masters, S. and C. Bothwell, “A CMM
Appraisal Framework, Version 1.0,”
Technical Report, Software Engineering
Institute, CMU/SEI-95-TR-001, Feb-
ruary 1995.

6. ISO/IECJTC1/WG10, “SPICE Prod-
ucts,” Technical Report, Type 2, June
1995.

7. Homyen, A., “An Assessment Model to
Determine Test Process Maturity,”
Diss., Illinois Institute of Technology,
July 1998.

8. Puffer, J. and A. Litter, “Action Plan-
ning,” IEEE Software Engineering Tech-
nical Council Newsletter, Vol. 15, No. 2,
pp. 7-10.

9. Grom, R., “Report on a TMM Assess-
ment Support Tool,” Technical Report,
Illinois Institute of Technology, April
1998.

CROSSTALK The Journal of Defense Software Engineering 31November 1998

BACKTALK

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

The New Terrorists
If you’re having problems with snakes coming to get you from behind your

bedroom chair at night, it helps to turn up the lights, open the door a crack, and
squeeze the stuffing out of your Tickle-Me-Ernie doll. Just ask my two-year-old
son, Daren. He still doesn’t know where his dreams stop and reality begins, but
he feels much safer since we instituted these powerful anti-snake defenses.

Thankfully, unlike toddlers, we adults can separate fantasy from reality. For
example, a few years ago, a movie about computer cracking and sabotage called
“The Net” came out. It was packed with eye rollers, but these were quickly re-
butted by Internet chat forums in one huge collective “Puh-LEEZE!”

The first clue about the movie’s realism was that the lead character, a lonely
geek beta tester, was played by the lovely Sandra Bullock—a casting decision
equivalent to making a movie about the Miss America Pageant with the lead,
Miss Delaware, played by Wilford Brimley. (Not that the cyberculture—which
likely includes readers of this journal—isn’t full of attractive, fascinating people
who are neither sensitive to negative stereotypes nor vindictive toward those who
propagate these stereotypes. Ha-ha! Please leave my medical records alone!)

However, it was mostly the technical issues that made net surfers guffaw at
“The Net.” For example, Bullock’s character routinely accesses an advanced mul-
timedia Internet full of cutesy features unavailable to the general public at ap-
proximately 1,153 times the bandwidth of typical modems. And get this: The
bad guys manage to steal vast sums and even kill people by breaking into critical
banking, police, hospital, and air-traffic computers.

Ha-ha! Hacker terrorists? What planet do these Hollywood types live on,
where critical computer systems are even indirectly connected to the Internet,
opening the door for terrorist geeks to remotely break in and cause havoc?

Well, okay, the world is spending billions of dollars each year to allow exactly
that. That’s why I wanted to see if cyberterroism were for real or just a hyped-up
Hollywood dream. What I saw made my head spin like an unbalanced Maytag.

After a few clicks in Yahoo! I was visiting sites with step-by-step instructions
on how to slip past firewalls, steal passwords, tap into phone and data lines, and
cover your tracks. Plus, there were various free “cracking” tools available for
download. Purveyors of this information seemed proud of the ease with which
they allegedly find weak links and holes in supposedly secure systems, where
they could cause serious damage if they were criminally inclined. (Which, of
course, they never are! Please don’t double my bank account balance!)

Speaking of which, I also read news reports on several successful electronic
bank break-ins, including a partially successful $10 million heist. And according
to the head of a major U.S. media organization, a team of hired government
crackers last year showed what kind of damage organized terrorists could do.
Using only techniques found on the Internet, they allegedly broke into “secure”
computers and made power grids fail, air traffic control systems go haywire, oil
refinery pumps stop working, and they compromised supply networks. They
supposedly covered their tracks well enough that the victims wouldn’t acknowl-
edge being cracked—these were considered unexplainable glitches, not attacks.

So as we blithely barge headlong into a world where every critical computer
system is in some way connected to the Internet—I suppose someone is already
working on a method to remotely pilot oil tankers over the Web—I wonder how
often we’re stopping to ask the following questions.

• Just because a system can have a Web interface, does that mean it should?
• If a critical systems is accessible to anyone with a Web browser and password,

why do crackers snicker so loudly when such a system is declared “secure”?
• Could evil crackers rig it so that the Miss America Pageant was actually won

by Wilford Brimley? Would this help resolve the swimsuit debate?
These tough questions impact all of us. And the fuzzy line between fact and

fiction makes me wonder: How real and dangerous are terrorist “cybersnakes”?
Are our defenses good or are we counting on “Ernie” to protect us? We must
address these questions, or later we may have tougher questions to answer. For
example: mascara or no mascara for Miss Delaware’s back hair? – Lorin May

